
Contents
HP TestExec SL Getting Started Book
E2011-90017 — Software Rev. 3.00 — Rev. E - January, 199
1. Introduction to HP TestExec SL

What is HP TestExec SL?...10
What Makes HP TestExec SL Different? ...15
The Benefits of Reusable Code ..17

Why Code Is Not Reused ..17
How HP TestExec SL Encourages Reusability.................................17

The Test Development Environment..19
Overview ...19
How the Software Tools Interact...20

About System Integration ...22

2. Installing & Running HP TestExec SL

Installing & Running on Windows 95 ..24
System Requirements ..24
Notes About Installing a New Version Over an Old Version24
To Install the Software on Windows 95 ..25
HP VEE Considerations ..26
HP BASIC for Windows Considerations ..26
To Run HP TestExec SL on Windows 95 ...27
To Uninstall HP TestExec SL on Windows 9527

Installing & Running on Windows NT...29
System Requirements ..29
Notes About Installing a New Version Over an Old Version29
Installing the Software...30

To Install HP TestExec SL on Windows NT 3.5130
To Install HP TestExec SL on Windows NT 4.0 or later.............30

HP VEE Considerations ..31
HP BASIC for Windows Considerations ..32
To Run HP TestExec SL on Windows NT..32
Uninstalling the Software ..33

To Uninstall HP TestExec SL on Windows NT 3.5133
To Uninstall HP TestExec SL on Windows NT 4.0 or later33
 1

3. Concepts

Working in the HP TestExec SL Environment 36
Understanding the Relationship Between Tasks & Data 36
Specifying the Properties for Parameters & Symbols....................... 37
Understanding the Two Views of Test Limits 40
Using Custom Tools to Enhance the Environment 42

About Testplans, Test Groups, Tests & Actions 44
A Closer Look at Testplans .. 46

What is a Testplan? ... 46
What’s Inside a Testplan?.. 46

Test Groups .. 46
What is a Test Group? .. 46
Why are Test Groups Useful?... 48

Sequencing & Flow Control .. 49
Flow Control Statements .. 50
Using Symbols with Flow Control Statements....................... 50
Branching on a Passing or Failing Test 51
Branching on an Exception... 52
More Complex Branching .. 54

Testplan Variants... 55
Global Variables in Testplans ... 58

A Closer Look at Tests ... 61
What is a Test? .. 61
What’s Inside a Test?... 61
Limits Checking .. 62
Parameter Passing ... 65

A Closer Look at Actions ... 69
What is an Action? .. 69
What’s Inside an Action?... 69
Paired Structure in Actions ... 71
Which Kind of Action Do You Need? .. 73
Passing Results Between Actions Inside Tests 75
How Actions Control Switching ... 76

About Exceptions ... 79
What is an Exception?... 79
How Does HP TestExec SL Handle Exceptions? 79
Where Should I Handle Exceptions? .. 80
2

...89

.91

...93
.94
...94
..94
.95
..96
..97
About Switching Topology...82
What is Switching?..82
What is Topology? ..82
How Switching & Topology Interact ..82
A Closer Look at Switching Topology..83

Switching Paths ..83
The Three-Layer Model for Switching Topology........................85

About Hardware Handlers ..88
Hardware Handlers in General ..88
Switching Handlers in Particular...88
What’s Inside a Hardware Handler?...
How Do Switching Actions Use Switching Handlers?
Where Do I Get a Hardware Handler? ...

About Test & Action Libraries ...
Libraries in General ..

Test Libraries..
Action Libraries...
Development Versus Production Libraries

What Belongs in a Library?...

Glossary of Terms...99

Index...111
 3

Notice
The information contained in this document is subject to change without
notice. Hewlett-Packard Company (HP) shall not be liable for any errors
contained in this document. HP makes no warranties of any kind with regard
to this document, whether express or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.
HP shall not be liable for any direct, indirect, special, incidental, or
consequential damages, whether based on contract, tort, or any other legal
theory, in connection with the furnishing of this document or the use of the
information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical
Data and Computer Software clause of DFARS 252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set
forth in FAR 52.227-19 (c) (1,2).

Use of this manual and magnetic media supplied for this product are
restricted. Additional copies of the software can be made for security and
backup purposes only. Resale of the software in its present form or with
alterations is expressly prohibited.

Copyright © 1995 Hewlett-Packard Company. All Rights Reserved.
 5

n.

 in

.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company.

Microsoft® and MS-DOS® are U.S. registered trademarks of Microsoft
Corporation.

Windows, Visual Basic, ActiveX, and Visual C++ are trademarks of
Microsoft Corporation in the U.S. and other countries.

LabVIEW® is a registered trademark of National Instruments Corporatio

Q-STATS II is a trademark of Derby Associates, International.

RoboHELP is a registered trademark of Blue Sky Software Corporation
the USA and other countries.

Printing History
E1074-90000 — Software Rev. 1.00 — First printing - August, 1995

E1074-90005 — Software Rev. 1.50 — Rev. A - March, 1996

Note The documentation expanded into a multi-volume set of books at Rev. B

E1074-90006 — Software Rev. 1.51 — Rev. B - June, 1996

E2011-90010 — Software Rev. 2.00 — Rev. C - January, 1997

E2011-90013 — Software Rev. 2.10 — Rev. D - May, 1997

E2011-90017 — Software Rev. 3.00 — Rev. E - January, 1998
6

hen

ar in
 box

mes

hich

e
ng a
About This Manual
This manual provides beginners with an introduction to HP TestExec SL. It
describes the product at an overview level, tells how to install and run the
HP TestExec SL software, and introduces concepts used in HP TestExec SL
and further described in the other users’ manuals.

Conventions Used in this Manual
Vertical bars denote a hierarchy of menus and commands, such as:

View | Listing | Actions

Here, you are being told to choose the Actions command that appears w
you expand the Listing command in the View menu.

If a form uses tabs to organize its contents, the name of a tab may appe
the hierarchy of menus and commands. For example, the Options dialog
has a tab named Search Paths. A reference to that tab looks like this:

View | Options | Search Paths

To make the names of functions stand out in text yet be concise, the na
typically are followed by “empty” parentheses—i.e., MyFunction()—
that do not show the function’s parameters.

Some programming examples use the C++ convention for comments, w
is to begin commented lines with two slash characters, like this:

// This is a comment

C++ compilers also will accept the C convention of:

/* This is a comment */

The C++ convention is used here simply because it results in shorter lin
lengths, which make examples fit better on a printed page. If you are usi
C-only compiler, be sure to follow the C convention.
 7

8

1

dly
 and
Introduction to HP TestExec SL

This chapter describes HP TestExec SL’s features at a high level and broa
describes system integration, which is the process of combining hardware
software to create a test system.
9

Introduction to HP TestExec SL
What is HP TestExec SL?

ns.

ple,
ment,
What is HP TestExec SL?
HP TestExec SL is a test executive designed for high-volume,
high-throughput functional test applications. Its test development and
execution environment provides you with a choice of programming
languages, instrumentation, fast and flexible switch management, and a
customizable operator interface. It also includes library features that
promote the maintenance and reuse of code.

HP TestExec SL contains three interrelated tools in a single environment:

• Test Executive

The Test Executive is used to develop tests and assemble them into
testplans. It also provides features for running and debugging testpla
The Test Executive can have multiple personalities, which means its
appearance can change to suit the kind of task being done. For exam
it presents one appearance when used as a test development environ
and another when used by production operators. Its personality is
10

Introduction to HP TestExec SL
What is HP TestExec SL?
determined by which login you use. The test development personality
shown below is used when developing tests.

An alternative, operator personality is customizable to meet the needs of a
specific production environment. Its default implementation, which provides
 11

Introduction to HP TestExec SL
What is HP TestExec SL?

ten
the basic control features and status information needed in a typical
production environment, is shown below.

• Action Definition Editor

The Action Definition Editor is used to create actions, which are the
building blocks from which tests are created. It lets you add code writ
12

Introduction to HP TestExec SL
What is HP TestExec SL?

ns
t
in the programming language of your choice into the framework of

HP TestExec SL.1

• Switching Topology Editor

The Switching Topology Editor is used to define switchable connectio
(low-level hardware) and the wiring inside a fixture used with the Tes

1. C/C++, HP BASIC for Windows, HP VEE, and National Instruments
LabVIEW are supported.
 13

Introduction to HP TestExec SL
What is HP TestExec SL?
Executive. Also, it is used to make the Test Executive aware of hardware
modules that are available as resources during testing.
14

Introduction to HP TestExec SL
What Makes HP TestExec SL Different?

in
 by

ives

er—
y of
,
 with
n
n

res.

 in

far

o
thing.
g
, this

 is
.
What Makes HP TestExec SL Different?
Test executives have existed for as long as there has been a need to do
repeatable testing in a production environment. Traditionally, test executives
have been custom, “roll your own” programs whose features included
sequencing, testing, checking pass/fail limits, error handling, displaying
status information to users, and more. Tests were written in the same
programming language as the rest of the test executive. To keep the ma
program from growing too large and unwieldy, tests usually were invoked
calls to the functions or subroutines in which the tests resided.

One thing that makes HP TestExec SL unique in the world of test execut
is that it more clearly distinguishes between sequencing operations and
testing operations. Sequencing—i.e., executing tests in a repeatable ord
is handled via a graphical user interface that executes tests written in an
several standard programming languages. Unlike typical test executives
HP TestExec SL’s sequencer has no programming language associated
it. Instead, you use menu commands or icons to specify the sequence i
which tests execute, set up global variables used to pass values betwee
tests, and other features of testing.

In HP TestExec SL, tests are a highly structured concept. They combine
user-written measurement code with system-supplied limits checking,
datalogging, test report generation, and pre- and post-conditioning featu
Because the language in which you write tests is not dictated by the
language in which the test executive is implemented, you can write them
any of several languages.

From the viewpoint of the sequencer, tests themselves are “atomic” inso
as they cannot be divided into smaller units unless you write the code in
them that way. For example, you could conceivably use the sequencer t
execute one huge test that made multiple measurements and did every
But tests usually are small, and acquire and check only a single operatin
parameter of the unit under test. Besides making tests more manageable
improves their reusability.

Another key difference of HP TestExec SL is that it is based on an
underlying technology from Hewlett-Packard called HP TestCore, which
an open, standardized framework for creating or modifying test systems
 15

Introduction to HP TestExec SL
What Makes HP TestExec SL Different?

s

nd
Using this framework lets Hewlett-Packard enhance the functionality and
performance of HP TestExec SL while maintaining a high degree of
compatibility with existing tests. This improves the long-term usefulness of
the code you write today.

Flexibility is another major benefit that HP TestCore brings to HP TestExec
SL. If desired, your tests can make calls to numerous API (application
programming interface) functions that manipulate the hardware and data
used by your test system. For example, the easiest way to control switching
hardware is through graphical features built into HP TestExec SL. But if you
need even greater control over switching, such as when changing switching
paths “on the fly” in the middle of a test, you can call an API that provide
lower-level access to switching hardware. In a similar fashion, you can
control many other aspects of HP TestExec SL’s operation at both high a
low levels.
16

Introduction to HP TestExec SL
The Benefits of Reusable Code

i.e.,
 the
 lack
ch
 who
at

ch

one

nes

e
teristic
me a

s did
 or
te the
e
or
in.
r
 of

res,

as
ped
The Benefits of Reusable Code

Why Code Is Not Reused

Although developing the programming code in measurement routines—
code that makes a measurement—can be time consuming, all too often
finished routines must be regarded as unique rather than reusable. The
of standardized tools and methods makes it difficult to keep track of whi
routines are available and their characteristics, such as what they do and
wrote them. Another traditional problem with measurement routines is th
their form may differ substantially across the various programming and
application platforms. For example, a routine written in BASIC may look
very different from a routine written in ANSI C. This tendency to make ea
measurement routine a custom application also limits its portability from
environment to another.

In a similar fashion, test procedures—i.e., groups of measurement routi
that comprise a test—may not be reused. Prior to HP TestExec SL, test
developers typically wrote a single “test procedure” that contained all th
code required to do the tasks needed to measure a performance charac
of a specific unit. A group of test procedures executed in sequence beca
“test sequence” or “testplan.” Often, these test procedures and testplan
the same kinds of tasks; for example, each might set up the instruments
conditions needed for the measurement, make the measurement, evalua
results, and such. Although these procedures fundamentally tended to b
more alike than different, they seemed like poor candidates for reuse. F
example, their lack of modularity made them difficult to modify or mainta
Also, there was no provision for managing them, which meant that othe
potential users were unaware of their characteristics or, in many cases,
their existence.

How HP TestExec SL Encourages Reusability

Continuing with the example of measurement routines and test procedu
suppose that test developers had access to a well-maintained library of
measurement routines written in a standardized, reusable format that w
compatible across platforms. These routines might include those develo
 17

Introduction to HP TestExec SL
The Benefits of Reusable Code

r

tes for
 a

 easy

ing
is
ics of
s let
the
 of

veral
in-house or prewritten routines purchased from other vendors. Then a test
developer might create a testplan simply by choosing from a catalog of
existing routines and assigning a sequence to them. Because it reduces the
ongoing necessity to “reinvent the wheel,” this convenient reuse of
routines—i.e., reduction in programming effort—is a major benefit of
HP TestExec SL.

When existing measurement routines cannot meet the needs of the test
developer, HP TestExec SL's architecture provides standard methods fo
modifying or enhancing existing measurement routines. Once these new
routines have been developed and debugged, they too become candida
reuse. Unlike traditional test routines, which may all be incorporated into
single, large program, HP TestExec SL uses a modular approach that is
to modify and maintain.

Another benefit of HP TestExec SL is that it provides tools for administer
the collection—i.e., “library”—of measurement routines. For example, it
easy to search for existing routines or procedures that have characterist
interest and then reuse or modify them. Because the administrative tool
measurement developers declare the characteristics of their routines in
registration library, those routines potentially are available to other users
HP TestExec SL. This reusability of measurements and libraries of
measurements can be especially beneficial to organizations that have se
test systems based on HP TestExec SL.
18

Introduction to HP TestExec SL
The Test Development Environment
The Test Development Environment

Overview

The Action Definition Editor and the Test Executive are the main tools used
when developing tests and, subsequently, testplans. Various editors and
forms appear in the software tools as needed when doing tasks associated
with test development. The Test Executive also provides features for
debugging tests and running testplans.

Note The most important concept to understand here is that developing testplans
is a multi-step process that requires multiple tools.

Although it does not appear in the diagram above, some test developers also
may use the Switching Topology Editor to define the test system hardware

Test Executive

Action Definition Editor

1. Write
measurement

procedures
in a standard
programming

language

2. Create actions
from

measurement
procedures

3. Create tests
from actions

4. Create
testplans
from tests
 19

Introduction to HP TestExec SL
The Test Development Environment

d
et

s are

l

atrix
for subsequent use by the Test Executive in controlling switchable
connections between resources and the unit under test, or UUT.

How the Software Tools Interact

A high-level, conceptual example of how the software tools interact is
shown below.

The upper sequence shows how you can use a C/C++ compiler to create a
source file (“.cpp”) containing one or more functions that, when compile
into an executable dynamic-link library (“.dll”), do useful tasks, such as s
up a power supply or make a measurement. Collectively, these function
called “action code” or “action routines.”

However, the Test Executive initially knows nothing about the DLL. You
must use the Action Definition Editor to create an “action definition” that
associates the DLL with descriptive information needed to use it. Each
action definition resides in a “.umd” file that, when used with the DLL,
forms an executable component called an “action.”

As the lower sequence shows, you also can create a DLL for an optiona
component called a “hardware handler,” which is a software layer that
enhances HP TestExec SL's interaction with hardware, such as a relay m
20

Introduction to HP TestExec SL
The Test Development Environment

es
m

T
ust”

 as

that

test

n is
 a
s
in a switching module. In this case, a hardware handler contains functions
the Test Executive calls to interrogate and control switching hardware.

The output from the Switching Topology Editor is a “.ust” file that describ
a layer of connections called “switching topology” associated with syste
resources, connections between the test system and the UUT, or the UU
itself. Used together, a hardware handler for a switching module and a “.
file provide information the Test Executive needs if you wish to use its
graphical features to control switchable connections during testing, such
connecting the UUT to power supplies, sources, and detectors.

The testplan, which resides in a “.tpa” file, is where these individual
elements are used together. A testplan is an ordered sequence of tests
each contains one or more of the predefined actions described earlier.
Running the testplan executes tests containing actions that do tasks to
the UUT.

As the testplan runs, actions in its tests control whatever instrumentatio
part of the test system. In a specific sense, “instrumentation” may mean
DMM or a frequency counter, but in a more general sense it also include
switching modules, or any other hardware needed to test the UUT.
 21

Introduction to HP TestExec SL
About System Integration

uch
 it,
ing.

s of
tion

the

these
ware
est

se
these
s.
may

test
ater
About System Integration
Traditionally, the system integrator has been the person who assembles, or
“integrates,” hardware and software to create a complete test system. S
integration might include choosing the hardware, wiring and configuring
and writing the software needed to use the hardware for production test
In many ways, a test system assembled this way is a custom creation.

Another necessary role when creating a test system is that of the test
developer. A test developer creates and debugs tests used to verify or
characterize the operation of whichever kind of unit or module is being
tested. For example, one or more test developers might develop a serie
tests and then release them for use by a manufacturing line in a produc
environment containing many test systems.

When you use HP TestExec SL as the basis for a test system, some of
tasks you do can be considered “standard” or mandatory insofar as they
always must be done before the test system can be used. Examples of
kinds of tasks include making the connections between the system hard
and the unit under test—often referred to as “fixturing”—and using the T
Executive to write tests that control the hardware.

Other kinds of tasks might be considered truly custom or optional becau
they are not necessarily done by most system integrators. Examples of
include customizing the operator interface and writing hardware handler
These custom tasks tend to be more complex than standard tasks, and
require specific skills beyond those needed to do the standard tasks.

You probably will need to do the standard tasks before you can use the
system, while the optional tasks may not be necessary or can be done l
when you are more familiar with the test system. Or, you may want to
distribute the system integration tasks—such as separating the system
integrator and test developer roles—and have each person read the
appropriate topics in HP TestExec SL’s documentation.
22

2

Installing & Running HP TestExec SL

This chapter describes how to install and run HP TestExec SL on the
Windows 95 and Windows NT platforms.

See Chapter 6 in the Using HP TestExec SL book for system administration
topics.
23

Installing & Running HP TestExec SL
Installing & Running on Windows 95

on

on

tures

s

an
Installing & Running on Windows 95

System Requirements

The hardware and software needed to install and run HP TestExec SL on
Windows 95 are:

• IBM-compatible PC (486 or faster) with at least 16 MB of RAM

• CD-ROM drive

• 1024 x 768 graphics

• At least 100 MB of free hard disk space (approx. 35 MB for the
HP TestExec SL software)

• Microsoft Windows 95

Notes About Installing a New Version Over an Old
Version

1. HP TestExec SL stores various configuration settings in its initializati
file, “<HP TestExec SL home>\bin\tstexcsl.ini”. Because this
initialization file may contain custom settings you wish to keep, a new
installation of HP TestExec SL does not replace an existing initializati
file, nor does it modify its contents.

However, this conservative approach to updating means that new fea
that require additional entries in the initialization file are not
automatically added. Thus, you must add them manually as follows:

Because newer versions of HP TestExec SL may include new feature
that require entries in the initialization file, we recommend that you do
the following prior to installing a new version of HP TestExec SL over
old version:

• Move the existing initialization file to a different location.
24

Installing & Running HP TestExec SL
Installing & Running on Windows 95

e

the

m
n

n

am
• Install the new version of HP TestExec SL.

• Use a text editor, such as WordPad in its text mode, to compare th
contents of the old and new initialization files. If the old file has
different configuration settings that you wish to keep, add them to
new file.

2. If you wish to keep an older version of HP TestExec SL on your syste
when installing a new version, install the new version to a new locatio
to keep if from overwriting existing files. Then edit the “[HP TestExec
SL]” entry in the “win.ini” file, which is located wherever you installed
Windows, to identify which version of HP TestExec SL to run.

Note If you do a Custom installation below and install the original configuratio
files, you can find a default copy of the initialization file, the datalogging
format files, and others in directory “<HP TestExec SL
home>\DefaultConfiguration”.

To Install the Software on Windows 95

Note The installation CD-ROM supplied with HP TestExec SL also supports
installing HP TestExec SL across a network to any disk visible within
Windows, such as to a shared disk on another PC.

1. Insert the HP TestExec SL CD-ROM in your CD-ROM drive.

2. Open the Windows 95 Control Panel (located by default in the “My
Computer” folder).

3. Choose the Add/Remove Programs icon.

4. Choose the Install button.

5. Follow the instructions that appear and specify the “setup.exe” progr
on the CD-ROM as the installation program to use.
 25

Installing & Running HP TestExec SL
Installing & Running on Windows 95

ite

 the

6. Follow the instructions that appear when the installation program runs.

Note If you will be developing actions in HP BASIC for Windows, choose the
Custom installation option and install the modules needed by HP BASIC for
Windows. If you wish to have default copies of the various configuration
files used by HP TestExec SL available, choose the Custom installation
option and install them.

HP VEE Considerations

HP TestExec SL communicates with HP VEE via a high-speed Remote
Procedure Call (RPC) mechanism based on the industry-standard Transport
Control Protocol (TCP). This is the same mechanism used by HP VEE to
invoke other HP VEE servers when using the Import Library object to load
remote functions. Because the communication between HP TestExec SL and
HP VEE is transparent from a user’s perspective, your only task is to wr
the HP VEE function library itself.

Before HP TestExec SL and HP VEE can work together, you must have
HP VEE Service Manager program, veesm, running on your PC. You
probably will want to place a shortcut to this program in your “Startup”
group to make it start automatically with Windows 95.

Beside having the Service Manager running, you need an entry for veesm in
your "\windows\services" file, which might look like this:

veesm 4789/tcp # HP VEE service manager

See the HP VEE documentation for details.

HP BASIC for Windows Considerations

When you install HP TestExec SL, it looks for HP BASIC for Windows on
your system. If it finds HP BASIC for Windows, HP TestExec SL installs
additional files needed to develop actions in HP BASIC for Windows.

Given the above, if you install HP BASIC for Windows after installing
HP TestExec SL you will be missing some files that you need. In this case,
simply do a partial reinstallation of HP TestExec SL via the Custom
26

Installing & Running HP TestExec SL
Installing & Running on Windows 95

ide

al

to

p
installation option and specify that only the HP BASIC for Windows files
should be installed.

To Run HP TestExec SL on Windows 95

1. Launch HP TestExec SL from its folder in the taskbar’s Start menu.

2. When HP TestExec SL starts, it prompts you to log in. You must prov
a valid login name and password.

Type “administrator” in the Name field. It requires no password.

Tip: You probably will want to add a password later to provide addition
security for your test system.

3. Once you have logged in, you will be presented with a list of groups
which your login belongs. Choose “Developer” from the list.

Note The personality of the Test Executive's user interface—e.g., test
development or production operator—is determined by which login grou
you use.

Tip: If you want the test development environment to run each time
Windows 95 runs, create a shortcut to “<HP TestExec SL
home>\bin\tstexcsl.exe” and place it in the Windows 95 “Startup” folder.

To Uninstall HP TestExec SL on Windows 95

1. Open the Windows 95 Control Panel (located by default in the “My
Computer” folder).

2. Choose the Add/Remove Programs icon.
 27

Installing & Running HP TestExec SL
Installing & Running on Windows 95

ed.

3. In the list of applications that appears in the Add/Remove Programs

dialog box, choose “HP TestExec SL” as the application to be remov

4. Click the Add/Remove button and follow the instructions that appear.
28

Installing & Running HP TestExec SL
Installing & Running on Windows NT

on

on

tures

s

an
Installing & Running on Windows NT

System Requirements

The hardware and software needed to install and run HP TestExec SL on
Windows NT are:

• IBM-compatible PC (486 or faster) with at least 32 MB of RAM

• CD-ROM floppy disk drive

• 1024 x 768 graphics

• At least 100 MB of free hard disk space (approx. 35 MB for the
HP TestExec SL software)

• Microsoft Windows NT version 3.51 or later

Notes About Installing a New Version Over an Old
Version

1. HP TestExec SL stores various configuration settings in its initializati
file, “<HP TestExec SL home>\bin\tstexcsl.ini”. Because this
initialization file may contain custom settings you wish to keep, a new
installation of HP TestExec SL does not replace an existing initializati
file, nor does it modify its contents.

However, this conservative approach to updating means that new fea
that require additional entries in the initialization file are not
automatically added. Thus, you must add them manually as follows:

Because newer versions of HP TestExec SL may include new feature
that require entries in the initialization file, we recommend that you do
the following prior to installing a new version of HP TestExec SL over
old version:

• Move the existing initialization file to a different location.
 29

Installing & Running HP TestExec SL
Installing & Running on Windows NT

e

the

m
n

n

• Install the new version of HP TestExec SL.

• Use a text editor, such as WordPad in its text mode, to compare th
contents of the old and new initialization files. If the old file has
different configuration settings that you wish to keep, add them to
new file.

2. If you wish to keep an older version of HP TestExec SL on your syste
when installing a new version, install the new version to a new locatio
to keep if from overwriting existing files. Then edit the “[HP TestExec
SL]” entry in the “win.ini” file, which is located wherever you installed
Windows, to identify which version of HP TestExec SL to run.

Note If you do a Custom installation below and install the original configuratio
files, you can find a default copy of the initialization file, the datalogging
format files, and others in directory “<HP TestExec SL
home>\DefaultConfiguration”.

Installing the Software

Note The installation CD-ROM supplied with HP TestExec SL also supports
installing HP TestExec SL across a network to any disk visible within
Windows, such as to a shared disk on another PC.

To Install HP TestExec SL on Windows NT 3.51

1. Insert the HP TestExec SL CD-ROM in your CD-ROM drive.

2. Use the Program Manager to run the “setup.exe” program on the
CD-ROM.

3. Follow the installation instructions that appear.

To Install HP TestExec SL on Windows NT 4.0 or later

1. Insert the HP TestExec SL CD-ROM in your CD-ROM drive.
30

Installing & Running HP TestExec SL
Installing & Running on Windows NT

am

s.

 for

port
o
ad
 and
ite

 the

T.
2. Open the Windows NT Control Panel (located by default in the “My
Computer” folder).

3. Choose the Add/Remove Programs icon.

4. Choose the Install button.

5. Follow the instructions that appear and specify the “setup.exe” progr
on the CD-ROM as the installation program to use.

6. Follow the instructions that appear when the installation program run

Note If you will be developing actions in HP BASIC for Windows, choose the
Custom installation option and install the modules needed by HP BASIC
Windows. If you wish to have default copies of the various configuration
files used by HP TestExec SL available, choose the Custom installation
option and install them.

HP VEE Considerations

HP TestExec SL communicates with HP VEE via a high-speed Remote
Procedure Call (RPC) mechanism based on the industry-standard Trans
Control Protocol (TCP). This is the same mechanism used by HP VEE t
invoke other HP VEE servers when using the Import Library object to lo
remote functions. Because the communication between HP TestExec SL
HP VEE is transparent from a user’s perspective, your only task is to wr
the HP VEE function library itself.

Before HP TestExec SL and HP VEE can work together, you must have
HP VEE Service Manager program, veesm, running on your PC. You
probably will want to execute this program from your “Startup” group
(Windows NT 3.51) or create a shortcut to it in the “Startup” folder
(Windows NT 4.0 or later) to make it start automatically with Windows N

Beside having the Service Manager running, you need an entry for veesm in
your "\windows\services" file, which might look like this:

veesm 4789/tcp # HP VEE service manager

See the HP VEE documentation for details.
 31

Installing & Running HP TestExec SL
Installing & Running on Windows NT

ide

to

p
HP BASIC for Windows Considerations

When you install HP TestExec SL, it looks for HP BASIC for Windows on
your system. If it finds HP BASIC for Windows, HP TestExec SL installs
additional files needed to develop actions in HP BASIC for Windows.

Given the above, if you install HP BASIC for Windows after installing
HP TestExec SL you will be missing some files that you need. In this case,
simply do a partial reinstallation of HP TestExec SL via the Custom
installation option and specify that only the HP BASIC for Windows files
should be installed.

To Run HP TestExec SL on Windows NT

1. Launch HP TestExec SL from the HP TestExec SL group in the Program
Manager (Windows NT 3.51) or from its folder in the taskbar’s Start
menu (Window NT 4.0 or later).

2. When HP TestExec SL starts, it prompts you to log in. You must prov
a valid login name and password.

Type “administrator” in the Name field. It requires no password.

Note You probably will want to add a password later to provide additional
security for your test system.

3. Once you have logged in, you will be presented with a list of groups
which your login belongs. Choose “Developer” from the list.

Note The personality of the Test Executive's user interface—e.g., test
development or production operator—is determined by which login grou
you use.
32

Installing & Running HP TestExec SL
Installing & Running on Windows NT

ar.

ed.
Tip: If you want the test development environment to run each time
Windows runs, either execute “<HP TestExec SL home>\bin\tstexcsl.exe” in
the “Startup” group (Windows NT 3.51) or create a shortcut to it in the
“Startup” folder (Windows NT 4.0 or later).

Uninstalling the Software

To Uninstall HP TestExec SL on Windows NT 3.51

1. Open the HP TestExec SL program group.

2. Double-click the “UnInstall” icon and follow the instructions that appe

To Uninstall HP TestExec SL on Windows NT 4.0 or later

1. Open the Windows NT Control Panel (located by default in the “My
Computer” folder).

2. Choose the Add/Remove Programs icon.

3. In the list of applications that appears in the Add/Remove Programs
dialog box, choose “HP TestExec SL” as the application to be remov

4. Click the Add/Remove button and follow the instructions that appear.
 33

3

Concepts

This chapter introduces concepts and terminology you need to understand
before using HP TestExec SL. Although features of the software tools are
shown here to make you aware of them, the details of their use are described in
the Using HP TestExec SL book.
35

Concepts
Working in the HP TestExec SL Environment

u will

itor
ed
sts to
 tasks,
Working in the HP TestExec SL Environment
This section provides an overview of several key features of HP TestExec
SL’s user interface. An awareness of these features is useful because yo
encounter them frequently.

Understanding the Relationship Between Tasks & Data

Many of your test development tasks will be done using the Testplan Ed
window, which is shown below. Generally speaking, this window is divid
into a left pane that contains a sequence of tasks, such as a series of te
execute, and a right pane that contains data associated with sequenced
such as the details of those tests.

Sequencing Data associated with sequencing

Tabs
36

Concepts
Working in the HP TestExec SL Environment

ng

e
ter.

ore

Because the right pane contains many features, its functionality is organized
into logical groups by tabs you can select to display specific subsets of
options and data.

Specifying the Properties for Parameters & Symbols

Throughout HP TestExec SL, you will see recurring variations on a generic
“properties box” used to specify the characteristics of parameters and
symbols. These boxes have titles that begin with Insert or Edit, dependi
upon the task. Examples include “Insert Symbol,” “Edit Symbol,”, “Insert
Parameter,” and “Edit Parameter.” Although you need not understand th
details of using these boxes yet, being familiar with them will be useful la

Although the titles of the boxes varies, their appearance and usage is m
similar than different. Each box allows two basic definitions of data: as a
 37

Concepts
Working in the HP TestExec SL Environment
value (a constant) or as a reference to a symbol in a symbol table. When used
to define or modify values, the box looks similar to this:

Besides varying with the type of data being described, the appearance of the
Properties Area changes when you enable Constant Value or Reference a
Symbol.

Features of this box include:

Name The name of the parameter or symbol.

Type The data type of the parameter or symbol.

Description A textual description of the parameter or symbol.

Constant Value If enabled, the parameter or symbol is a constant
whose characteristics are shown in the Properties
Area.

Reference a Symbol If enabled, the parameter or symbol is a reference
to a symbol stored in a symbol table, and the
characteristics of the reference are shown in the
Properties Area.

Properties Area
38

Concepts
Working in the HP TestExec SL Environment
Result/Output This button’s label varies. When it is Result,
enabling it means the parameter or symbol is used
to determine the pass/fail status of a test. When it
is Output, enabling it means the parameter or
symbol is used to return a value.

Properties Area A region of the form whose appearance varies
with the type of data because different types of
data have different attributes. For example, if the
data type is Int32 the Properties Area looks like
this:

And if the data type is Real64Array, it looks like
this:

As shown below, when a parameter or symbol
references a symbol table, the Properties Area
contains a list that shows the name of the
reference and a list of symbol tables to search for
the reference.

In the example above, the reference is to a symbol
named Channel in the SequenceLocals
symbol table.
 39

Concepts
Working in the HP TestExec SL Environment
Understanding the Two Views of Test Limits

HP TestExec SL provides two ways to view or modify the limits used to
decide whether tests pass or fail. The first, which probably is the more

As shown below, dropping down the Search list
shows the names of the symbol tables you can
search. If you choose All Public, all the symbol
tables in the list are searched, and they are
searched in the order in which they appear in the
list.

Symbols that are available in the symbol table(s)
being searched appear when you drop down the
Reference list. The example below shows that when
you search All Public, symbols in all the symbol
tables (except for external symbol tables) appear in
the list.

WaveformChannel, which is in the
SequenceLocals symbol table, once again
appears in the Reference list because
SequenceLocals is among the symbol tables
searched when Search is All Public.
40

Concepts
Working in the HP TestExec SL Environment
straightforward to use, resides on the Limits tab in the right pane of the
Testplan Editor window, as shown below.

Invoking this view of the test limits is as simple as choosing the Limits tab.

More experienced users may prefer the shortcut provided on the Actions tab,
which is shown next. The grid near the bottom of the Actions tab defaults to
showing the parameters to actions in the test, but a Limit Checker button lets
you quickly switch to viewing the test limits instead. Because this method
 41

Concepts
Working in the HP TestExec SL Environment
requires less switching among the tabs in the Testplan Editor window, it can
save time when working with a large number of tests.

Switching to a different tab or clicking an action in the list restores the
default view of parameters.

Using Custom Tools to Enhance the Environment

Adding custom tools to the development environment lets you launch
programs external to HP TestExec SL or automate repetitive tasks. For
example, you could write a batch file that copies a testplan and its related
42

Concepts
Working in the HP TestExec SL Environment

files from a development location to a production location, and then create a
custom tool to run that batch file without leaving HP TestExec SL.

As shown below, you can add an optional Tools menu and submenus that let
you call executable files or functions in DLLs, plus add separator bars to
organize items in menus.

Note A program launched by a custom tool continues running even if you exit
HP TestExec SL.

For more information, see “Adding Custom Tools to HP TestExec SL” in
Chapter 6 of the Using HP TestExec SL book.
 43

Concepts
About Testplans, Test Groups, Tests & Actions
About Testplans, Test Groups, Tests & Actions
The hierarchy of the components or building blocks used in the Test
Executive environment is shown below.
44

Concepts
About Testplans, Test Groups, Tests & Actions

tion
ecific
 of

nd
These components are:

Although they are not shown above, testplans, sequences, and tests also have
named “symbol tables” associated with them. A symbol table is a collec
of data items, such as variables, called “symbols” whose usage has a sp
scope, such as restricted to a single test or global to an entire sequence
tests. Symbol tables are mentioned where appropriate in this chapter, a
further described in Chapter 5 of the Using HP TestExec SL book.

Testplan A named entity that contains multiples sequences, or
“streams of execution,” used to test a specific device, or
UUT (unit under test).

Sequence A named series of test groups, tests, and flow control
statements executed in a predefined order.

Test group An optional, named set of tests executed in a predefined
order. Test groups can be nested inside test groups.

Test A named sequence of actions executed as a group.

Action A named call to one or more external routines written in a

standard programming language.a

a. The exception to this is a “switching action,” which is built into
HP TestExec SL and does not call an external routine.

Language-
specific
routines

A routine that does something useful, such as making a
measurement.
 45

Concepts
A Closer Look at Testplans

d an
 you
that
A Closer Look at Testplans

What is a Testplan?

As shown below in the left pane of the Testplan Editor, which contains a
sequence of tasks, a testplan is a named sequence of tests executed to test a
specific unit under test, or UUT. As a testplan contains tests, tests contain
actions that call routines that do tasks. This layering of components is used
extensively in HP TestExec SL.

A testplan contains multiple streams of execution, or “sequences.” In the
example above, the sequence named “Main” contains five tests.

What’s Inside a Testplan?

Test Groups

What is a Test Group?

At its simplest, a test group is an optional, named pair of statements in a
testplan. A “testgroup” statement starts the definition of a test group, an
“end testgroup” statement ends the definition. Between these statements
can place test statements, other test group statements, and statements
control the flow of testing, such as “for...next” statements.
46

Concepts
A Closer Look at Testplans
An example of the definition for a test group looks like this:

Although the body of this sample test group has only tests in it, it also could
contain additional test groups.

Like tests, test groups can have actions associated with them. What makes a
test group unique, though, is that the scope of its actions bounds any tests
inside the test group. This lets each test group have an associated list of
actions that do tasks before and after the tests inside the group.

Actions in a test group can do common setup tasks needed by all tests in the
test group, such as program power supplies to values needed during testing.
Also, they can do common cleanup tasks needed after testing ends, such as
reset the output of the power supplies to zero.

An example of this is shown below. Here, actions associated with
Testgroup_1 do the setup and cleanup tasks for three tests, Test_3 through
Test_5. Thus, those tests do not need to duplicate these setup and cleanup
 47

Concepts
A Closer Look at Testplans

hem
tasks. Test groups are a good way to organize a group of tests whose setup
and cleanup requirements are alike.

As shown below, you use the right pane of the Testplan Editor window to
view or modify the action(s) used to set up or clean up the tests inside test
groups.

The details of using actions to do setup and cleanup tasks is described in
greater detail in “A Closer Look at Actions.”

Why are Test Groups Useful?

Test groups are useful because they let you:

• Organize testplans to do slow actions only once, rather than repeat t
in each test.
48

Concepts
A Closer Look at Testplans

s.

 test

es
s,
oup
rm
ire

ce of
 a

 left
he
rror

want

ent,

ng.
ay

an.
,
.

rt
s.
• Easily and explicitly manage the state of the test system to avoid
unnecessary operations.

• Apply a common setup of setup and cleanup tasks to a series of test

• Ensure that setup actions are “undone”—i.e., cleaned up—when the
group is exited.

Testplans frequently use nested test groups, where one test group resid
within the scope of another. The outer group might set up power supplie
and the inner group set up specific instruments needed by the overall gr
of tests. For example, a nested test group might set an arbitrary wavefo
generator to produce a particular waveform, then run the tests that requ
the waveform.

Sequencing & Flow Control

Within the context of HP TestExec SL, a “sequence” is a named sequen
test groups and/or tests executed in a predefined order. In other words,
sequence is a path of execution through a testplan.

Under normal circumstances, the tests in a testplan execute in the Main
sequence that appears as the default sequence in the Testplan Editor’s
pane. However, there may be times when you need more control over t
sequence of execution. For example, what should the testplan do if an e
occurs during testing? Instead of having the testplan continue, you may
it to branch to an error handling routine, such as a different test that
identifies or clears the error condition. Or, you may want to skip subsequ
related tests and branch to an unrelated series of tests.

Even within a given sequence, you may need to control the flow of testi
For example, you may want to loop a specific number of times. Or, you m
need to evaluate an expression to decide what happens next in a testpl
And what happens if a test fails? Instead of simply quitting or continuing
you may want to branch to another test that further evaluates the failure

The next several topics describe features of HP TestExec SL that suppo
multiple sequences of execution and flow control within those sequence
 49

Concepts
A Closer Look at Testplans

an

ed

 the

e
e

 you
 runs
Flow Control Statements

HP TestExec SL supports a variety of BASIC-like flow control statements,
such as “If... Then... Else” and “For... To... Step.” As shown below, you c
insert flow control mechanisms and descriptive comments directly into
testplans.

Adding flow control statements is as simple as typing values in predefin
“fill in the blanks” forms, an example of which is shown next.

Flow control statements are described in more detail with related tasks in
Using HP TestExec SL book.

Using Symbols with Flow Control Statements

If desired, you can use a flow control statement to examine or modify th
value of a symbol in a symbol table, and then take action based upon th
symbol’s value.

Note The syntax for accessing a symbol in a symbol table from a flow control
statement is <symbol table. symbol>. If you do not specify <symbol table>,
its value defaults to SequenceLocals.

As an example of using a symbol with a flow control statement, suppose
want one or more tests or test groups to execute the first time a testplan
but not during subsequent runs. You may be doing this to save time by
50

Concepts
A Closer Look at Testplans

ols

le
d

trol
programming instruments to a known state once per testplan run instead of
each time the testplan runs.

As shown below, you can use the value of the predefined RunCount symbol,
whose value increments by one each time the testplan runs, in the System
symbol table to determine if a test or test group is executed.

In a similar fashion, you can interact with other predefined symbols or
symbols that you create from scratch.

For more information about predefined symbols, see “Predefined Symb
in the System Symbol Table” in Chapter 5 of the Using HP TestExec SL
book.

Branching on a Passing or Failing Test

Examining the value of the TestStatus symbol in the System symbol tab
will tell you whether the most recent test passed (TestStatus = 1) or faile
(TestStatus = 0). As shown below, you can use TestStatus in a flow con
statement to control the testplan’s flow of execution. This example
implements a “branch on pass” feature if the most recent test passed.
 51

Concepts
A Closer Look at Testplans

test

 in
that
 a test

lure

ally
lying
The next example shows how to do the opposite of what was shown above;
i.e., implement a “branch on fail” feature by branching if the most recent
failed.

Another way to branch on a failing test is shown below. The Options tab
the right pane of the Testplan Editor has an “On Fail Branch To” feature
lets you branch to a specified label, such as the name of another test or
group, if the current test fails.

As shown below, this can be useful for skipping one or more tests if a fai
occurs, and then resuming testing elsewhere in the testplan.

Branching on an Exception

Exceptions, which are errors or unusual events that you would not norm
expect to happen during testplan execution, can be raised by the under
52

Concepts
A Closer Look at Testplans

urs.

 to

, you
er
code on which the Test Executive is built or by user-defined routines inside
actions. When this happens and you do not explicitly handle the exception in
the action in which it occurs, the left pane of the Testplan Editor lets you
branch to an alternate sequence of tests whose sole purpose is to handle
exceptions.

The example below shows how each testplan actually contains two
sequences of execution, one—Main—that is used when tests execute
normally and another—Exception—that is used only if an exception occ
Here, an exception while Test_2 was executing caused a branch to an
alternate sequence of tests called the “Exception sequence” that is used
handle errors.

Keep the following in mind when using an Exception sequence:

• Only an exception causes branching to the Exception sequence; i.e.
cannot force branching to the Exception sequence via a failure or oth
means.
 53

Concepts
A Closer Look at Testplans

curs.

ate

ou
.
fe

nd

 UUT
then

s of
st in
 Main

ption

n a
 the
• If you do not want an exception to force branching to the Exception
sequence, you must handle the exception in the action in which it oc

• All tests share a single Exception sequence; i.e., there is not a separ
Exception sequence for each test in the Main sequence.

• When an exception causes branching to handle an error condition, y
should assume nothing about the state of the test system or the UUT
Thus, in most cases you should immediately reset everything to a sa
state in the test to which you branch. For example, you should
immediately discharge capacitors on the UUT, reset signal sources a
power supplies, and then reset any remaining instruments.

• The Exception sequence may need to bleed trapped charge from the
by programming power supplies and other sources to zero volts and
waiting before resetting the test system.

More Complex Branching

If desired, you can create more complex testplans by using combination
branching on failures and branching on exceptions. As shown next, a te
the Exception sequence can branch on a failure the same as a test in the
sequence. However, its branching is restricted to other tests in the Exce
sequence; i.e., it cannot branch to a test in the Main sequence of tests.

If desired, you can use the “On Fail Branch To” feature—i.e., branching o
failure—to force branching by creating a test that returns a result, setting
54

Concepts
A Closer Look at Testplans

nts”
cause

r

d

sion

d
test’s pass/fail limits so that it always fails, and not setting the test’s Save
Pass/Fail option in the right pane of the Testplan Editor (shown below).

Testplan Variants

Testplans support the use of one or more named variations called “varia
that can define the behavior of the tests and test groups inside them. Be
they let you use one testplan with n different sets of test limits and
parameters, variants are useful where one UUT is very similar to anothe
except for slightly different values for its test limits or parameters.

If a testplan has variants1, you can do the following for each of its tests an
test groups:

• Choose a variant under whose name you wish to define a distinct ver
of the test or test group.

• Define a set of parameters and limits for a version of a test associate
with a variant.

• Execute or ignore each test by variant.

1. All testplans have a default variant named “Normal”.
 55

Concepts
A Closer Look at Testplans
Only tests that you specifically identify to be ignored for a variant, as
shown below, are not executed.

Note The most important thing to know about variants is that they can provide a
single testplan with multiple personalities.

When the testplan is run, you specify which variant to use. This is similar to
having different versions of a testplan available, except that what appears to
be different versions is actually multiple views of the same testplan
dependent upon which version of the tests in it are executed or ignored based
on variants.

The following example shows the use of two variants, QA (Quality
Assurance) and Production, in a testplan. Check boxes to the right of each
56

Concepts
A Closer Look at Testplans
test indicate which tests are ignored for the variants. Notice that every test is
executed for the QA variant but that tests 4 and 5 are ignored for the
Production variant.

When the testplan is run with the QA variant, all the tests are executed and
the stringent set of parameters and limits associated with the QA variant is
passed to them. But when the testplan is run with the Production variant, two
fewer tests are executed and the normal parameters and limits appropriate
for production testing (associated with the Production variant) are passed to
the tests.

Various features in the Test Executive let you define variants for tests, and
then specify which variant to use when executing a series of tests in a
testplan, respectively.
 57

Concepts
A Closer Look at Testplans

s the
tions
 can

s

 #3
t
, the
Also, you can associate the switching or setup/cleanup actions in test groups
with variants used in the testplan. Unlike tests, however, you cannot execute
or ignore test groups based on variants.

Global Variables in Testplans

If desired, you can define global variables—i.e., variables whose scope i
testplan—in a testplan. Global variables let you share data among the ac
in all the tests in a testplan. As shown below, one place global variables

be stored is in the SequenceLocals symbol table,1 and they are accessible a
parameters for any action in any test included in the Main sequence.

The example below shows the result from Test #1 being passed to Test
via a global variable named global_var_1. In this simple example, the resul
from Test #1 might be a value needed in Test #3. When Test #1 finishes

1. Note the distinction between this and the TestStepLocals symbol table used
to pass results between actions inside a single test.
58

Concepts
A Closer Look at Testplans

ed in

s for
als
ion
 it is

he
e—
al

h the

a
e
.

result is passed by reference to global_var_1. When Test #3 executes, it is
passed the value of the global variable as one of its parameters.

In a similar fashion, the value returned by Test #1 is visible to the entire
testplan. Thus, Test #1 could return a value—a baud rate, perhaps—us
any or all subsequent tests.

Besides the SequenceLocals symbol table used to store global variable
the Main sequence, there is another symbol table named SequenceLoc
that stores global variables whose scope is tests included in the Except
sequence. Although both tables have the same name, each instance of
uniquely accessible only in the sequence in which it appears.

If you need a symbol table whose scope is the entire testplan—i.e., all t
tests and actions in both the Main sequence and the Exception sequenc
you can either use the TestPlanGlobals symbol table or create an extern
symbol table whose symbols are stored in an external file associated wit

testplan.1

External symbol tables can be useful when you wish to support multiple
versions of a testplan. For example, each symbol table can hold the dat
(symbols and their default values) used to define a specific version of th
testplan. Also, you can name an external symbol table whatever you like

1. There also is a symbol table named System whose scope is the entire
testplan. It contains predefined symbols associated with the testing
environment.
 59

Concepts
A Closer Look at Testplans
Note Be aware that the SequenceLocals symbol table contains no predefined
variables. You must use the Symbol Tables box, which is shown below, to
add a new variable to the symbol table.
60

Concepts
A Closer Look at Tests

low.

 is
ght

es
. For
lays
set a
 the

edes

A Closer Look at Tests

What is a Test?

A test is a named procedure that does some form of testing activity on a unit
under test, or UUT. To be meaningful, most tests have a limits checking
feature that determines if the UUT passed or failed the test. Also, most tests
use a datalogging feature to store information collected during the test, such
as information about failing tests for subsequent analysis.

What’s Inside a Test?

A test consists of one or more actions and their associated data executed in a
predefined sequence. An action calls an action routine, which is custom code
you write that does something useful, such as making a measurement. An
action called an “execute action” forms the basis for a test, as shown be

Note Although actions and the routines they call are separate components, it
usually simplest to refer to them collectively as “an action.” Thus, we mi
say “an execute action makes a measurement” and actually mean “an
execute action calls an action routine that makes a measurement.”

An execute action may be all that is needed for a test. But there are tim
when it is useful to have other tasks precede or follow an execute action
example, you may need to set up the conditions for a test—i.e., close re
that make necessary connections, set power supplies to known values,
DMM to a specific range, etc.—before using an execute action to make
measurement.

To address this need, you can include a “setup/cleanup action” that prec
the execute action in your test. A setup/cleanup action can have a setup
 61

Concepts
A Closer Look at Tests

ge,
ment
ts of

 of a

”

ines
ries
t
set is

g
component that executes an action routine before the execute action begins,
and a cleanup component that executes another action routine after the
execute action ends.

If desired, you can use more than one of each kind of action in a test. For
example, you might have several setup/cleanup actions whose setup
components establish the initial conditions for the test. After that, an execute
action might make a preliminary measurement—to return an offset volta
perhaps—followed by a second execute action that makes the measure
used to decide if the test passes or fails. Finally, the cleanup componen
the setup/cleanup actions might restore the hardware to a known state.

A third type of action, called a “switching action,” lets you close
connections, such as switching paths made with relays, at the beginning
test and controls the status of those connections when the test ends.

Actions are described in greater detail under “A Closer Look at Actions.

Limits Checking

To be meaningful, most tests have a limits checking feature that determ
if the UUT passed or failed the test. Limits define the acceptable bounda
for a test. If the results from a test are outside its specified limits, the tes
fails. If desired, a test can have more than one set of limits, where each
associated with a named variant of a testplan, such as “Hot” or “Cold.”

Whenever you use the Testplan Editor’s right pane to define a test that
includes an action that returns a result, you have the option of specifyin

limits for the test.1 Conceptually, you can consider limits checking as a
feature that is built into the framework of each test.
62

Concepts
A Closer Look at Tests
As shown below, HP TestExec SL includes several kinds of limits checkers.

The limits checkers you can use are:

1. If you do not specify limits, they assume a default value assigned when the
action was created. The default may or may not be what you need.

Min/Max The test passes if its result is within specified
minimum/maximum values. To pass, the result
must be greater than or equal to the minimum and
less than or equal to the maximum.

Equivalence The test passes if its result exactly matches a
specified value.

Nominal Tolerance The test passes if its result is within a specified +/-
tolerance of a specified nominal value. To pass, the
result must be greater than or equal to the lower
tolerance value and less than or equal to the upper
tolerance value.

Note: The nominal tolerance is a simple number
and not a percentage. In other words, a nominal
tolerance of 5 means the result must be within plus
or minus 5 of the nominal value, not within plus or
minus 5 percent of it.

<No Limits> The test is not checked against pass/fail limits.
 63

Concepts
A Closer Look at Tests
If desired, you can also use the Test Limits Editor box shown below for a
global perspective that lets you examine or modify test limits across an
entire testplan.

The list of actions that appears in the right pane of the Testplan Editor
window shows an asterisk preceding the action whose result is used for
limits checking. As shown below, if a test contains various kinds of actions,
the action whose name has an asterisk beside it need not necessarily be the
last action in the list.
64

Concepts
A Closer Look at Tests

al

 that
ts
ou
le to
st2
If a test contains more than one execute action, you can specify which action
is used for limits checking. The next example shows changing the action
used for limits checking from Risetime to Frequency.

Parameter Passing

Tests contain actions that do something useful, such as make a measurement.
In a sense, each test is generic until parameters are passed to it and to its
actions to create a specific instance of the test. For example, a generic test
that programs a power supply to produce an output, programs a voltmeter to
a range, and makes a voltage measurement must be passed specific values
for the power supply and voltmeter, and pass/fail limits for the measurement.
Thus, a test is a “base” specification whose “overrides” determine its fin
characteristics.

Besides passing data in parameters to a test, you can also pass a value
determines if or how the test is executed. For example, suppose two tes
were named Test1 and Test2. Depending upon the results from Test1, y
could pass a value from it to a global variable in a symbol table accessib
both tests. The value of the global variable could then be passed into Te
and evaluated to determine whether Test2 executes.
 65

Concepts
A Closer Look at Tests

ing
Shown below is how the Test Parameters tab in the right pane of the Testplan
Editor lets you specify parameters for tests.

Also, each action in a test has a list of parameters, and each parameter in that
list has a default value defined when the action was created. As shown
below, you use features at the top and bottom of the right pane in the
Testplan Editor to specify the values for parameters in actions that the Test
Executive uses to create a specific instance of the test when it executes the
test.

Notice that the values of two of the parameters shown above—“module
handle” and “channel”—begin with @. This indicates that instead of pass
values directly, the parameters reference symbols in symbol tables.
66

Concepts
A Closer Look at Tests

n

king

 test

eter
In a similar fashion, the Limits tab in the Testplan Editor’s right pane lets
you specify pass/fail limits that help define a unique instance of a test. A
example is shown below.

Note The values of parameters that return numeric results used for limits chec
are converted to and displayed as reals.

As shown below, parameters and pass/fail limits (which are a part of the
framework) passed into a test define a unique, specific test that does a
specific task. Parameters are passed in a named group called a “param
 67

Concepts
A Closer Look at Tests

old
sed to

ly
e
block,” which is explained in greater detail in the Using HP TestExec SL
book.

Each test also contains a symbol table named TestStepParms used to h
values passed as parameters to the test (as opposed to parameters pas
actions in the test). Also, a symbol table named TestStepLocals stores
symbols whose scope is the test.

Although this example is simplistic in the sense that actual tests probab
will be passed many parameters instead of only a few, the concept is th
same in either case.
68

Concepts
A Closer Look at Actions

”

d in

.“

.
d

A Closer Look at Actions

What is an Action?

An “action” is the smallest component of a test. It is a routine that does
something useful, such as making a measurement or controlling the
switching operations needed for a particular test.

There are three types of actions:

Note Switching actions are described under “How Actions Control Switching.

In many cases, actions are reusable. For convenience, actions are store
libraries whose contents you can quickly search. If the action you need
already exists, you can copy it and use it as-is in your test. Or, you can
modify existing actions or create new ones from scratch if none of the
existing actions suits your needs.

For more information about libraries, see “About Test & Action Libraries

What’s Inside an Action?

Think of an action as a predefined framework to which you must add a
custom action routine—i.e., code that you write—specific to your needs
The action routine is written in a language such as C and then associate
with an entry point in the action. When the action is called by a test, it
executes the routine associated with it. For example, the execute action

execute Does a task, such as make a measurement

setup/cleanup Has optional setup and cleanup components that can do
tasks before and after an execute action or by
themselves

switching Controls switching hardware
 69

Concepts
A Closer Look at Actions

 the
up
shown below calls an action routine named MeasureDCV that triggers a
digital multimeter to make a DC voltage measurement.

For simplicity, this example and others that follow show pseudo-code
notation for the action routine or its purpose. The actual code you add
depends upon the means by which you control instruments, such as directly
from C/C++ or through an instrument control language such as HP VEE.

Continuing with the example above, suppose you also needed to program a
power supply to an initial value before making the measurement, and return
the power supply to zero afterward. The sequence of events might be:

1. Program power supply #1 to 5 VDC.

2. Make the DC voltage measurement.

3. Program power supply #1 to 0 VDC.

The actions and custom routines to do this sequence of tasks is shown below,
with circles to indicate the order of execution.

The example now includes one setup/cleanup action. The setup/cleanup
action’s setup component calls an action routine that does a task before
execute action (programming the power supply to 5 VDC), and its clean
70

Concepts
A Closer Look at Actions
component calls an action routine that does a task afterward (programming
the power supply to zero).

Note Although either of the components in a setup/cleanup action is optional or
will work by itself, in most cases you will use them as complementary pairs;
i.e., whatever you have the setup component do, the cleanup component will
undo.

Paired Structure in Actions

Insofar as the order of execution is concerned, the example above implies
that the setup component of a setup/cleanup action is located somewhere
before the execute action, and the cleanup component is located somewhere
after the execute action. In reality, though, the actions in the test look like
this:

How is this possible? As shown below, the order of execution of the setup
and cleanup components in a setup/cleanup action is determined by their
relationship with the execute action. When a setup/cleanup action precedes
an execute action, HP TestExec SL ensures that the setup component
executes before the execute action and the cleanup component executes after
the execute action.
 71

Concepts
A Closer Look at Actions
When more than one setup/cleanup action is used in a test, the nesting of the
setup and cleanup components is determined by the order in which the
actions occur. Refer to the example below.

The numbered circles in the example above show how inner loops finish
before outer loops, which means the order in which setup and cleanup
components in setup/cleanup actions are executed is similar to the operation
of loop control structures used in many programming languages.

Note Actions execute in the order specified, so you must be sure to specify them
correctly. For example, if the execute action appeared first in the test above,
it would execute before either of the setup/cleanup actions.

As mentioned earlier, the order of execution of setup and cleanup
components is determined by the relationship between the setup/cleanup
action in which they appear and execute actions. Thus, the actions in the
previous example really look like this:
72

Concepts
A Closer Look at Actions
Fortunately, you do not need to remember all the details of the actions and
their components inside each test. The Test Executive environment provides
a Test Execution Details window, which is shown below, that you can use to
view the details of tests, including the sequence in which the components in
its actions execute.

Also, when you use the Action Definition Editor to create actions, it helps
you specify their contents correctly. For example, an execute action cannot
have setup or cleanup components, and the editor prevents you from making
inappropriate choices. As shown below, the fields for specifying the names
of Setup and Cleanup components are disabled when the type of action is
Execute.

Which Kind of Action Do You Need?

Given that you have execute actions and setup/cleanup actions to choose
between, how do you decide which to use in a given situation? For example,
should you use several simple actions, such as a series of execute actions
that each do only one task, or something more complex, such as an execute
action preceded by more complex setup/cleanup actions?
 73

Concepts
A Closer Look at Actions

t, use

se a

c.

m a
 it

well
sures

n.

ep it
ead

, the
ore
sks.
ent

eters
ions
ive
Keep the following in mind when deciding which kind of action to use in a
test:

• If an action does a single, specific task, such as make a measuremen
an execute action.

• If an action has obvious or natural setup and cleanup components, u
setup/cleanup action. For example, you should always use a
setup/cleanup action with sources such as power supplies, DACs, et

Complementary setup/cleanup pairs are the best way to ensure that
essential actions occur in a specific order. For example, if you progra
power supply to some voltage in a test, you probably need to program
to zero when the test has finished. A setup/cleanup action does this
and, because both components are combined in a single action, it en
they remain together if you move the action in your testplan.

• If an action must handle an exception condition, use an execute actio

Suppose you are aware that the UUT has a failure mode that could ke
from responding correctly. Because this represents an exception inst
of a catastrophic failure, you want the test to recover gracefully by
handling the exception, Here, you should use an execute action that
compensates for or clears the failure condition.

Having a strategy for using actions in tests is especially important if you
create your own actions because you cannot create appropriate actions
unless you can anticipate how they will be used. The simpler an action is
more likely it is to be reusable. Thus, actions that do a single task are m
likely candidates for reuse than more complex actions that do several ta
For example, an action that does nothing more than program an instrum
to a specific range may be reusable in several tests, with only its param
changed from instance to instance. The trade-off when using simple act
is that you may need several of them to do what one more comprehens
action could do, which increases the complexity of your test.
74

Concepts
A Closer Look at Actions
Passing Results Between Actions Inside Tests

If desired, you can pass the results from one action to another within a test.
For example, the result from one action might be passed as a parameter that
determines what another action does. Variables defined in the symbol table

called TestStepLocals1, whose scope is the test, are used to pass values
between actions inside a test.

The example below shows the result from Action #1 being passed to Action
#3 via a variable named var1. In this simple example, the result from Action
#1 might be an op-amp offset needed as a correction factor in Action #3.
When Action #1 finishes, the result is passed by reference to var1. When
Action #3 executes, it is passed the value of the variable as one of its
parameters.

1. Note the distinction between this and the SequenceLocals symbol table,
TestPlanGlobals symbol table, and external symbols tables used to pass
results at the testplan level.
 75

Concepts
A Closer Look at Actions

For
and
put,

test
d
Note Be aware that the TestStepLocals symbol table contains no predefined
variables. You must use the Symbol Tables box, which is shown below, to
add a new variable to the symbol table.

How Actions Control Switching

Many tests require that the test system’s hardware be in some known state
before the measurement begins. For example, suppose you were testing a
UUT whose output depended on a specific waveform at its input. Prior to
making the measurement in this test, you probably would need to set up a
power supply, a signal source such as a signal generator, and a detector such
as a frequency counter. You probably would use one or more setup/cleanup
actions in the test to set up these conditions, followed by an execute action to
make the measurement.

Besides setting up the hardware, you also need to establish whatever
connections are needed between the hardware and the UUT before the
measurement begins. These connections are called a “switching path.”
example, the power supply needs to be connected to the UUT's power
ground pins, the signal generator needs to be connected to the UUT's in
and the frequency counter needs to be connected to the UUT's output.

Unless the scope of your testing needs is very limited and can be
“hard-wired” permanently, you probably will make these connections via
some form of switching module that contains a relay matrix. Thus, your
requires some means of controlling the relay matrix to set up the desire
switching path.
76

Concepts
A Closer Look at Actions

e

ion
e
e test

 to
you

 at
pen,

ty

t

If you are using hardware handler software to communicate with your
switching hardware (see “About Hardware Handlers”), the Test Executiv
provides a convenient “switching action” to control switching setup and
cleanup. A switching action is a special kind of built-in setup/cleanup act
that closes connections, such as switching paths made with relays, at th
beginning of a test and controls the status of those connections when th
ends.

Note Unlike other kinds of actions, you do not use the Action Definition Editor
create switching actions. Instead, switching actions are predefined and
insert them as you create tests.

The following happens when a switching action closes one or more
switching paths during a test:

1. All of the connections defined for the switching path are closed.

2. The Test Executive waits for the closures before continuing.

3. The action or actions following the switching action are executed.

4. Depending upon which option you specified for the switching action,
the end of the test the connections can remain in their current state, o
or be restored to their previous state.

Caution HP TestExec SL has no way of knowing if you are “hot switching”—i.e.,
switching with power applied—during a test. Thus, it is your responsibili
to see that switching actions are done at appropriate times.

Two more ways to control switching from actions are:

• If you are using hardware handler software, you can write actions tha
make calls to a special Hardware Handler API that controls switching
paths.

This method lets you explicitly modify switching paths during a test,
which makes it quite versatile. Because it requires you to write code,
however, it is more difficult to use than the Switching Path Editor.
 77

Concepts
A Closer Look at Actions

ever

st

rack
ed,
For more information about the Hardware Handler API, see Chapter 3 in
the Reference book.

• If you are not using hardware handler software, you can write actions
containing code that communicates directly with your switching
devices—i.e., does not use features in the Test Executive—via which
I/O strategy you have chosen.

This method potentially is the most versatile because it lets you do
anything allowed by your I/O strategy. However, it also can be the mo
complex and problematic because it does not let features of the Test
Executive assist with the task. For example, your code may have to t
the states of relays, ensure that “break before make” rules are enforc
and such.
78

Concepts
About Exceptions

ns
en

ode

tes

fe
itors
y

er
u

 an

About Exceptions

What is an Exception?

Insofar as HP TestExec SL’s testing environment is concerned, exceptio
are errors or unusual events that you would not normally expect to happ
during testplan execution. Exceptions can be raised by the underlying c
on which the Test Executive is built, or by user-defined routines inside
actions.

Note Although they are similar in concept, exceptions in HP TestExec SL are
distinct from exceptions in a programming language or in an operating
system.

How Does HP TestExec SL Handle Exceptions?

HP TestExec SL handles exceptions like this:

• The Test Executive environment provides a specific “Exception
sequence,” which is a branch of the testplan that automatically execu
when the system detects an exception.

The Exception sequence should put the test system and UUT in a sa
state. For example, the Exception sequence should discharge capac
on the UUT, reset signal sources, reset power supplies, and reset an
remaining instruments. Since the Exception sequence should perform
only a safe, no-assumptions shutdown of the system, it may be slow
than other operations. You can edit an Exception sequence just as yo
would any other sequence of tests.

For an example of using the exception sequence, see “Branching on
Exception.”

• If there are no tests in the Exception sequence, the system raises an
exception to be caught by the user interface, signaling that the system
could not be shut down properly.
 79

Concepts
About Exceptions

ption
are

ns
 for

tely.

ion

ions
 has

ide

r,
, the

ter

y
ay

truct
n
h
ed in

an
• Test groups do not execute after an exception occurs. When an exce
occurs, the test may have only partially completed, leaving the hardw
in an unknown state. Therefore, a test group’s normal clean-up actio
may be invalid. Again, use the Exception sequence to do all clean-up
exception conditions.

• HP TestExec SL treats exceptions that reach the test environment as
“abort” conditions and stops executing the test and testplan immedia
The Exception sequence then executes automatically.

• The user interface controls whether testing continues after an except
has occurred. The interface can determine if an exception occurred
during test execution. The user interface can also query if any except
occurred during the Exception sequence to decide if a safe shutdown
occurred. The user interface decides whether to allow restarting the
testplan on the same or a new UUT. The user interface can also dec
whether to continue looping on a testplan.

• The user interface treats exceptions differently for developer, operato
and automation interfaces. For exceptions in the developer interface
user interface displays a dialog box and stops, even if a successful
shutdown has occurred. If you write your own operator or automation
interface, you may want to continue at the next testplan or module af
an error. This lessens the chances of an exception shutting down a
production line.

Where Should I Handle Exceptions?

Whenever possible, you should handle exceptions within actions so the
never cause branching to the Exception sequence. For example, you m
know that a non-fatal error–such as a time-out for an instrument–might
occur and want to handle that exception in the action. You can then cons
the action routine so it will catch, check, and clear the exception and the
continue to fail or retry the test as needed. Other exceptions include suc
conditions as an action's parameters not matching the parameters defin
the Action Definition Editor, memory allocation errors, and so on.

If you need to completely stop execution from within an action, you can
create a dialog box requiring a response from the user. This forces hum
intervention before testing can continue.
80

Concepts
About Exceptions
Exception handling in actions is described with language-specific topics
about creating actions in the Using HP TestExec SL book. Also, see
Chapter 4 in the Reference book for a description of the functions in the
Exception Handling API, which lets you raise and handle user-defined
exceptions plus examine and handle exceptions raised in the testing
environment.
 81

Concepts
About Switching Topology

s
ry

. We

st

t

are
t,
and

dler
About Switching Topology

What is Switching?

Most tests require that the test system’s hardware be in some known state
before the measurement begins. Besides setting up the hardware, such as
programming power supplies and instruments to known values or states, you
need to establish connections between the hardware and the UUT before
making the measurement. Many of these connections are not permanently
“hard wired” but are controlled programmatically via some form of
“switching.” Switching, multiplexing, and signal routing exist because it i
not cost effective to have every instrument or other resource behind eve
pin.

What is Topology?

The Test Executive cannot control switching unless it knows which
programmable signal paths exist for your specific test system hardware
refer to this information collectively as the switching topology, or simply
“topology,” available for testing a given UUT. Topology information
includes definitions of the modules, wires, switches, and buses of the te
system that are interconnected by switching.

How Switching & Topology Interact

Assuming that you have hardware handler software (described in “Abou
Hardware Handlers”) for each programmable module that does your
switching, a software tool called the Switching Topology Editor lets you
define or describe your hardware so the system software is aware of its

characteristics.1 This process maps a logical view of your system's hardw
onto its physical reality. For example, you can associate a physical poin
such as a pin on the UUT, with a logical node name that is easy to use

1. You cannot use the Test Executive’s graphical features, such as the
Switching Path Editor, to control switching unless you use hardware han
software.
82

Concepts
About Switching Topology

s

ed
ng
remember, such as UUT_Signal_in. From then on, you can refer to the
node name, or an alias for it, and the Test Executive knows which physical
point you mean. This level of abstraction lets you focus on developing tests
instead of trying to remember details of the hardware.

Once you have entered this topology information and saved it, you can use
the Switching Path Editor to specify switching actions that tell the Test
Executive how to control programmable paths during testing. A switching
action sets up connections, such as those made via a relay matrix module,
needed when a test begins. It also controls the state of those connections
when the test ends.

A Closer Look at Switching Topology

Switching Paths

As shown below, electrical end-to-end connections in a test system are made
via a “switching path” that consists of one or more individual connection
made by “switching elements” that interconnect “nodes.”

Here, the switching path connects three nodes whose names are
Source_hi, ABus1, and CPU_in. Source_hi might be some form of
stimulus, and CPU_in might be a pin on the UUT. They are connected by
closing two switching elements, denoted 1 and 2, located on a bus nam
ABus1. The switching elements themselves might be relays on a switchi
card.
 83

Concepts
About Switching Topology

e

gy.

ting

ent
If we wanted to describe the switching path above in a single, readable

statement it might look like this:1

[Source_hi ABus1 CPU_in]

This means that Source_hi connects to ABus1, which connects to CPU_in.
Note that Source_hi, ABus1, and CPU_in are logical names—i.e.,
labels—that are convenient to use but do not actually describe where th
physical node is located. Because there is a single switching element
connecting them, we say that Source_hi and ABus1 are “adjacent.” In a
similar fashion, ABus1 and CPU_in also are adjacent.

Having seen the above, we now know that:

• A node is any electrically common, uninterruptable point in the topolo

• Each node has a name, or label.2

• Two nodes are adjacent if there is only one switching element connec
them.

• A switching path is an ordered set of adjacent node names.

Why not simply call a switching element a relay? Calling it a relay is an
oversimplification because other kinds of switching elements exist. For
example, multiplexers and rotary switches also are switching elements,
except they have multiple positions while a relay has only two: open and
closed.

Switching becomes more complicated when all the elements that form a
switching path are not located on the same card or module. Then, the
switching path has to include a specifier to identify which switching elem
on which card is being used to make the connection.

1. This is the notation that appears in the Switching Path Editor when you use it
to define switching paths.

2. Nodes also can have multiple names, or aliases, for convenience in
referencing them.
84

Concepts
About Switching Topology
The Three-Layer Model for Switching Topology

HP TestExec SL uses a three-layer model to define a test system’s switching
topology. As shown below, the first layer defines the system hardware, the
second defines one or more removable fixtures used with the system
hardware, and the third defines one or more UUTs used with a given fixture.

Information typically defined at the system layer includes:

• Definitions for any cards or modules used in the system, including
adjacent switching elements.

• A definition of the cabling that connects the cards or modules.

• Definitions of aliases for system resources.

Information typically defined at the fixture layer includes:

• Definitions of wires in the fixture.

• Definitions for the names of any edge connectors.

• Definitions for any electronics inside the fixture that is a part of your
switching strategy.

Information typically defined at the UUT layer includes:

• Definitions of aliases for test points on the UUT.
 85

Concepts
About Switching Topology
Each layer in the switching topology lets you define:

aliases Aliases are convenient, alternate names for node names. For
example, in the system layer you might call a system
resource DVM_high instead of MCM:Inst1. Or, in the
UUT layer you might call a test point on the UUT CPU_in
instead of Edge_Connector_Pin_2. Besides improving
the readability of names, aliases increase the portability of
tests and testplans across test systems. Each node can have
one or more aliases.

wires Wires include wires, cables, and jumpers. In the system
layer, these wires could describe how you have cabled
together the test system’s cards or modules. Or, in the fixture
layer you could describe interface pins that have been
shorted together.

modules Modules are “boxes,” cards, or groups of programmable
switches that need to be managed by the switching software.
86

Concepts
About Switching Topology
What do these actually mean? Refer to the next example, which shows how
the conceptual layers might relate to actual hardware.

Although it may seem complex at first, having three separate layers of
switching topology increases the likelihood that you can reuse individual
layers. For example, you only have to modify the UUT Layer when using an
existing fixture and test system to test a new UUT. This can be very
convenient if you have a family of modules to test that can share common
resources and fixturing but whose internal details vary.
 87

Concepts
About Hardware Handlers

.,

trol

tand
r
ther
ction

t

a

the

does
m

le

all

 the
About Hardware Handlers

Hardware Handlers in General

A hardware “handler” is an additional layer of software between
HP TestExec SL and a device driver. By providing a set of standard—i.e
“well-known”—functions through which HP TestExec SL communicates
with device drivers, a handler enhances HP TestExec SL's ability to con
devices.

The best way to understand what a hardware handler does is to unders
what happens if a handler is not used. When using a conventional drive
strategy, the actions in a test talk to instruments, switching modules, or o
devices via a device driver as the test executes. This means that each a
must communicate via a specific control language or set of commands
understood by the device driver. Thus, actions are specific and unique
insofar as an action that controls an instrument via one control language
cannot readily be reused to control other instruments requiring a differen
language.

But when a handler is used, actions can communicate with devices via
standard set of function calls known to HP TestExec SL. The handler
translates these standard calls made by actions into the specific control
language needed to communicate with a driver or instrument. Because
function calls generally remain the same from device to device—the
exception being specific functions that one device supports but another
not—it is much easier to reuse actions (and tests and testplans built fro
them) across various kinds of test systems.

Switching Handlers in Particular

A common type of hardware handler is a “switching handler,” which
contains routines that know how to communicate with a switching modu
and are aware of its topology. You do not call switching handlers directly
when using them. Instead, you use a “switching action” in your tests to c
the switching handler for you. When the switching handler is called,
software that manages switching decides which function to call based on
88

Concepts
About Hardware Handlers

ndler,

 to
d as

he

ts

L.
high-level (symbolic) names in the paths, the topology of the system
hardware, the fixture, and the names of UUTs.

What’s Inside a Hardware Handler?

A hardware handler contains code, written in C, that implements the
functions called by HP TestExec SL when it interacts with hardware. A few
of the functions are general-purpose enough to be useful with various kinds
of hardware modules. These functions can:

• Open (initialize) a module.

• Close a module.

• Reset a module to a default state (which can be different from its
initialized state).

• Declare any parameters needed to create a unique instance of the ha
such as which instrument identifier to use.

A hardware handler also can contain specialized functions that are used
interact with switching hardware; i.e., when the hardware handler is use
a switching handler. These functions can:

• Set the position of an element in a switching module.1

• Return the current position of an element in the switching module.

• Declare nodes that define the topology of the switching module and t
switching elements that make them adjacent.

• Optionally improve the speed of switching by letting switching elemen
open and close in parallel with one another instead of sequentially.

Each hardware handler resides in its own DLL. You need one hardware
handler for each type of module you wish to control from HP TestExec S

1. An “element” is a programmable connection, such as a relay or a
multiplexer.
 89

Concepts
About Hardware Handlers
However, a single hardware handler can control more than one module
because it is passed one or more parameters that specify a unique instance of
the module to control.

The example below shows a hardware handler used to control switching
hardware, which means it is a switching handler. A switching handler
contains functions called by switching actions. The various functions inside
the DLL, some of which include calls to the switching API, control the
operation of the switching module. You do not need to write code that calls
these functions. Instead, your task in creating a switching handler is simply
to make the functions do whatever you wish them to do when they are called
by HP TestExec SL.

The functions in a switching handler let HP TestExec SL communicate with
the switching module via the switching handler. This communication is
two-way insofar as HP TestExec SL can request status information, such as
the current position of a switching element, as well as control the operation
of the switching module.

Caution Do not use both a switching handler and a direct I/O strategy to control the
same switching module. Because a switching handler tracks the states of the
switching elements in a switching module, if you directly manipulate the
switching module the handler will not be aware of it and may assume the
wrong state.
90

Concepts
About Hardware Handlers

s in

ure
nents.

s

ship
n the

r
me

s.
How Do Switching Actions Use Switching Handlers?

As stated earlier, a switching handler’s purpose is to let switching action
tests in your testplan control switching hardware. However, the way in
which switching actions, layers in the switching topology, switching
handlers, and switching hardware work together may initially seem obsc
because various software tools are used to create the individual compo

The relationships among switching actions, switching topology layers,
switching handlers, and switching hardware are established by the step
below.

• You use the Switching Topology Editor to define topology layers and
associate switching handlers with them. This establishes the relation
between physical hardware resources and logical resources defined i
topology layers, such as switchable nodes and wires.

When defining topology layers, you specify one switching handler pe
type of hardware module. When there are multiple modules of the sa
type, you can pass parameters (such as a VXIbus address) to the
switching handler to create unique instances of the hardware module
 91

Concepts
About Hardware Handlers

ests
• After creating a testplan, you specify which switching topology files to
use with the testplan. This makes switchable paths defined in the
switching handler visible to your testplan.

• You use the Test Executive’s features to create switching actions in t
in your testplan.
92

Concepts
About Hardware Handlers

 may
• You use the Switching Action Editor and Switching Path Editor to
specify what each switching action should do.

After you have done the preceding, the switching paths specified in
switching actions cause HP TestExec SL to make calls to the switching
handler, which in turn makes calls to a device driver or other means of
controlling the switching hardware.

Where Do I Get a Hardware Handler?

Custom test systems sold by Hewlett-Packard that use HP TestExec SL
come with prewritten hardware handlers appropriate for their specific
hardware. Otherwise, you must write your own hardware handler, as
described in Chapter 2 of the Customizing HP TestExec SL book.
 93

Concepts
About Test & Action Libraries

s.

About Test & Action Libraries

Libraries in General

In HP TestExec SL a library is a directory containing related items that are
potentially reusable. The types of libraries supported by the Test Executive
are:

You can search for library entries by name, add new entries, and modify or
delete existing entries.

Test Libraries

Reusing existing tests can greatly reduce the amount of work needed to
develop testplans for future UUTs. Although not every test that you develop
will be a potential candidate for reuse, you probably will create some that are
important enough to reuse as-is or as templates for new, similar tests.

During the test development process you can save a test definition, which is
a copy of a test suitable for use as a template, in a test library. Each test
definition contains:

• A list of actions used in the test.

• The parameters for the actions, plus default values for the parameter1

• A list of results associated with the test.

Test Library Contains test definitions that provide the structure for
tests. You can save any test in a testplan to a test
library.

Action Library Contains the actions from which tests are built.

1. Only one set of values for parameters and limits—i.e., the values for one
named variant—is stored with each test definition.
94

Concepts
About Test & Action Libraries

lts

y of
g
ple,
its

 for

the
e
t
”.

eful

te

 tend
• Default values used for limits checking by comparing the actual resu
against the desired results.

As shown below, you reuse an existing test definition by inserting a cop
it into a new testplan. In many cases, you will need to modify the existin
definition's parameters to fit the circumstances of the new test. For exam
you may need to specify which UUT pin is to be tested and modify the lim
for the reused test.

Test libraries are organized in a directory structure you can customize to
meet your needs. For example, you may want a directory for
general-purpose tests as well as individual directories that contain tests
particular types of UUTs.

The name of each test library is the same as that of its directory. Inside
test library directory, each test definition has a unique name, which is th
name of the test followed by the extension “utd”. For example, you migh
have a test named “ileak” defined in file “ileak.utd” in directory “my_tests
Thus, the name of the test library is “my_tests”.

Action Libraries

Action libraries contain the actions used to build tests. They are most us
when they store actions that do a single task because simple actions
potentially have greater reusability than more complex actions. Although
some actions are provided with the Test Executive, you are likely to crea
many more to address your specific testing needs. Thus, action libraries
to become customer-specific over time.
 95

Concepts
About Test & Action Libraries

's

 one.

;
ure
iated

 use
ries

cial,
nt
tion,
r this
he

ch
sts,
Actions consist of a definition or source and a DLL that contains the action’s
executable code. The definition contains:

• The name of the DLL in which the action code is found.

• A description of the action.

• The type of action, which can be C parameter block, National
Instruments LabView, or HP VEE calling sequence.

• Definitions of parameters used in the action, including the parameter
type, default value, and description.

Note Action names should be unique so the Test Executive can identify each

The definition for each action resides in a file whose extension is “umd”
e.g., “dmmsetup.umd”. Action libraries are organized in a directory struct
you can customize to meet your needs. Each action has two files assoc
with it: its definition, and its DLL. The DLL need not be in the same
directory as the definition.

We recommend that you organize action libraries under a root directory,
the root directory to hold all action DLLs, and define as many subdirecto
(libraries) as needed to hold the action definition files.

Development Versus Production Libraries

When developing code, it is a common practice to store the code in a spe
private library until it is stable enough for use in a production environme
or by other developers. And after the code has been released to produc
there may be times when you need to enforce changes to testplans. Fo
reason, the organization of libraries used for development need not be t
same as the organization used in a production environment.

If you need to move individual library entries, or groups of them, follow
these guidelines:

• Be sure that the library search path (tests, actions, and the DLL sear
path list) on any given system reference directories containing the te
96

Concepts
About Test & Action Libraries

o

ll be

sted
he

er,
the

as

 by

 are

actions, and handler routines needed by any testplan to be run on that
system.

• If you move the action or instrument handler library entries, be sure t
move both the definition file and the DLL.

• Be sure the names of library entries are unique so the correct one wi
found and used.

What Belongs in a Library?

The previous topics described the characteristics of libraries, and sugge
how to use them, but did not suggest what belongs in libraries. Ideally, t
tests and actions that you store in libraries should have the following
characteristics:

• They should be appropriate for reuse.

It is in your own best interests to keep reusability in mind when
developing tests and actions. Generally speaking, simple,
general-purpose tests and actions tend to be more reusable than larg
more specialized pieces of code. However, complexity is not always
determining factor.

For example, suppose you were designing a test for a module that w
one in a family of similar modules. If you made the test just specific
enough to test whichever features all the modules in the family had in
common, you probably could reuse the test on all the modules simply
providing it with new parameters and limits. Tests and actions that
exhibit good reusability are comprehensive but not so large that they
cumbersome.

• They should use logical names for pins on the UUT, not specific pin
identifiers or other “hard-coded” information.

• They should not depend upon a specific sequence of actions or tests
preceding them for correct operation.
 97

Concepts
About Test & Action Libraries
Note If you save in a library a test whose setup or cleanup tasks are derived from a
surrounding test group, the test saved in the library loses those setup or
cleanup tasks. Thus, you should indicate this dependency in the descriptive
comments for the test to make others aware of this potential problem.
98

Glossary of Terms

This glossary provides definitions of terminology that may be unfamiliar or
unique to HP TestExec SL. The definitions are in alphabetical order.
99

ming
Action
The smallest component of a test or test group. Most actions have a name
and call a user-written routine that does something useful, such as make a
measurement. The types of actions are execute, setup/cleanup, and
switching.

Action Definition Editor
A software tool used to create actions, which are the building blocks used
to create tests and test groups.

Action routine
Executable code, written in a standard programming language, that is
called by an action. An action routine does something useful, such as
making a measurement.

Action style
An action's “style” determines the method in which parameters are
passed to its action routines. The style depends upon which program
language is used to write the action routines.

Actions can have the following styles:

DLL (Written in C/C++) Parameters are passed in a named
group or “block” of parameters. This style is highly
recommended as the fastest, easiest to create, and
easiest to maintain.

HP VEE (Written in HP VEE) Parameters are passed in a named
block or group of parameters to be graphically “wired” to
an HP VEE function.

LabVIEW (Written in National Instruments LabVIEW) Parameters are
passed in a named block or group of parameters to be
graphically “wired” to a National Instruments LabVIEW
virtual instrument (VI).

HP RMB (Written in HP BASIC for Windows) Parameters are
passed via a list of parameters in a server program.
100

as

ons
xec

se

e

n

g a

s

ides
g
Adjacency
Two nodes in the switching topology that can be connected by a
switching element.

Alias
An alternate name for an item in the switching topology. Aliases let you
use convenient names when defining topology; for example, you could
assign node “MCM:Inst11” an alias that is easier to remember, such
“ScopeInput”. Each node can have one or more aliases.

Note that you cannot use aliases for the names of modules.

API (application programming interface)
In the context of HP TestExec SL, a large number of predefined functi
provided for use in the code that you write for a test system. HP TestE
SL includes the:

• C Action Development API, which provides functions that let you u
a C/C++ compiler to develop action routines.

• Exception Handling API, which provides functions that let you rais
and examine exceptions that occur during testing. Also, it includes
functions that let you programmatically abort testing if an exceptio
occurs.

• Runtime API, which provides functions that let you replace the
default user interface for operators with a custom interface.

• Hardware Handler API, which contains functions used when writin
hardware handler.

Datalogging
The process of collecting data about tests when the testplan runs.
Subsequent study of this data can aid you in improving the processe
associated with manufacturing and testing.

Data container
A method of encapsulating data beneath a layer of abstraction that h
the data's complexity and increases its portability across programmin
environments. A data container is an object.
 101

s

 to

DLL (dynamic-link library)
A library of software code that is automatically loaded and unloaded as
needed.

Exception
An error or unusual event that you would not normally expect to happen
during testplan execution. Exceptions can be raised by the underlying
code on which the Test Executive is built, or by user-defined routines
inside actions.

Note Although they are similar in concept, exceptions in HP TestExec SL are
distinct from exceptions in a programming language or operating system.

Execute action
A type of action typically used to make a measurement. Each execute
action has a name and calls user-written code that does a task. You use
the Action Definition Editor to define an execute action and a
programming environment, such as Visual C++, to implement its code.

Hardware handler
A software layer between HP TestExec SL and the driver for a hardware
module. By providing a set of standard—i.e., “well-known”—function
through which HP TestExec SL communicates with device drivers, a
handler enhances HP TestExec SL's ability to control devices.

Keyword
An identifier used to restrict the number of matches found when
searching for a specific item. Keywords often describe the item; for
example, suitable keywords for an action might be “trigger” or “range”
identify what an action does or how it is used.

Library
A collection of related code stored in one or more directories.
HP TestExec SL supports libraries of actions and libraries of tests.
Organizing actions and tests into libraries makes it easier to find and
manage existing code so you can reuse it.
102

Limits checker
A feature that decides whether a test passed or failed by comparing the
test’s results against predefined criteria. The kinds of limits checkers
provided by HP TestExec SL include:

Master keyword
A keyword stored on a predefined list in the Action Definition Editor’s
initialization file. You can use the Action Definition Editor to add a
master keyword to any action.

Module
A hardware resource in the switching topology, such as a VXIbus
instrument.

Node
Any electrical point in the switching topology. Each node has a name, or
label.

Min/Max The test passes if its result is within specified
minimum/maximum values. To pass, the result
must be greater than or equal to the minimum and
less than or equal to the maximum.

Equivalence The test passes if its result exactly matches a
specified value.

Nominal
Tolerance

The test passes if its result is within a specified +/-
tolerance of a specified nominal value. To pass,
the result must be greater than or equal to the
lower tolerance value and less than or equal to the
upper tolerance value.

Note: The nominal tolerance is a simple number
and not a percentage. In other words, a nominal
tolerance of 5 means the result must be within plus
or minus 5 of the nominal value, not within plus or
minus 5 percent of it.

<No Limits> The test is not checked against pass/fail limits.
 103

 to

their

 in a
st

l

r

gle

e
ment.

gle
nt.
Operator interface
A user interface whose main purpose is to let system operators interact
manually with HP TestExec SL. For example, a typical operator interface
might have onscreen buttons labeled "Start" and "Stop," as well as status
indicators labeled "Pass" and "Fail" to report the results from testing.
System operators might use a mouse to "press" these buttons and then
accept or reject UUTs based on their pass/fail status after the testplan has
run.

Parameter block
A list of named parameters stored in a uniquely named collection or
“block.” When you need to use the parameters, you specify a handle
the parameter block instead of specifying the full list of parameters.
Parameters in a parameter block are looked up by name and not by
position in the block.

Profiler
A software tool you can use to see how long each action or test group
testplan takes to execute. Once you know how long each action or te
group takes to execute, you can decide where to begin the "tuning"
process, and monitor any improvements you make.

After enabling the profiler, you run a testplan to collect data, and then
either view Pareto charts directly in HP TestExec SL or use a financia
spreadsheet program to further analyze the data.

Routine type
The identifier of how an action routine is used. You can specify eithe
setup, cleanup, paired setup/cleanup, or execute routines, where:

• Execute routines contain a single entry point and typically do a sin
task, such as making a measurement.

• Setup routines contain a single entry point and typically do a singl
task, such as setting up a power supply before making a measure

• Cleanup routines contain a single entry point and typically do a sin
task, such as resetting a power supply after making a measureme
104

lly

 a
and
e

cuted

ons.
at

l

ade

 not
ey

a

dler
to
ditor

he
ys.
• Paired setup/cleanup routines contain two entry points and typica
bracket (surround) one or more execute actions. For example, the
setup component of a setup/cleanup routine could set the UUT to
particular mode, an execute routine could make a measurement,
the cleanup component of a setup/cleanup routine could return th
UUT to its idle mode.

Sequence
A named series of test groups, tests, and flow control statements exe
in a predefined order.

Setup/cleanup action
A type of action typically used do tasks before and after execute acti
Each setup/cleanup action has a name and calls user-written code th
does a task. You use the Action Definition Editor to define a
setup/cleanup action and a programming environment, such as Visua
C++, to implement its code.

Switching action
A type of action that sets up connections, such as switching paths m
with relays, at the beginning of a test and controls the status of those
connections when the test ends. Unlike other types of actions, you do
use the Action Definition Editor to create switching actions; instead, th
are built into HP TestExec SL. Also, switching actions do not have
individual names.

Switching element
A programmable connection, such as a relay, between two nodes in
switching path.

Switching handler
A common type of hardware handler. When you use a switching han
with a switching module, you can use the Switching Topology Editor
define your test system's topology and then use the Switching Path E
to conveniently control switching paths during a test or test group.

Switching path
A necessary connection between nodes during a test or test group. T
connection is made via one or more switching elements, such as rela
 105

 the

r
tion.

st
s

T.
or
e or

es,
In the example of a switching path below, the source bus of the function
generator is connected to the measurement bus of the oscilloscope when
the switching path is closed.

[FuncGen SrcBus Scope MeasBus]

Switching state
A “snapshot” or stored copy of one or more switching paths and the
states of the switching elements in those paths.

Switching topology
A combination of physical and logical descriptions that define the
switching configuration and interconnections between resources and
UUT, which includes definitions for the modules, wires, switches, and
buses of the test system. These definitions map a logical view of you
system's hardware onto its physical reality, and add a level of abstrac

Switching Topology Editor
A software tool used to define switching topology and to make the Te
Executive aware of hardware modules that are available as resource
during testing.

Switching topology layer
Switching topology is defined in three layers: system, fixture, and UU
The first layer defines the system hardware, the second defines one
more fixtures used with the system hardware, and the third defines on
more UUTs used with a given fixture.

Information defined at the system layer includes:

• Definitions for any cards or modules used in the system.

• A definition of the cabling that connects the cards or modules.

• Definitions of convenient names—i.e., aliases—for system resourc
such as “DVM_high”.

Information defined at the fixture layer includes:

• Definitions of wires in the fixture.
106

ur

as

h the
al

 the

e
alues
hin a

t to

n

e

hin a
• Definitions for the names of any edge connectors.

• Definitions for any electronics inside the fixture that is a part of yo
switching strategy.

Information defined at the UUT layer includes:

• Definitions of convenient aliases for test points on the UUT, such
“TP1.”

Symbol table
An unordered, named collection of data items (variables) called
“symbols” whose usage has a specific scope. For example:

• The symbol table named System contains symbols associated wit
testing environment, such as the user ID, test system ID, and seri
number of the UUT. Its scope is the testplan.

• User-named external symbol tables are supported. Their scope is
testplan with which they are associated.

• The symbol table named SequenceLocals contains symbols whos
scope is a sequence. Variables defined in it can be used to pass v
between tests or test groups because the variables are visible wit
given sequence throughout the testplan.

• The symbol table named TestStepLocals contains symbols whose
scope is a specific test or test group. Variables defined in it can be
used to pass values between actions inside the current test but no
actions in other tests or test groups.

• The symbol table named TestStepParms contains symbols whose
scope is a specific test or test group. Variables defined in it contai
parameters passed to the test or test group.

• The symbol table named TestPlanGlobals contains symbols whos
scope is global to the testplan and all tests and actions in all
sequences. Variables defined here can pass values anywhere wit
testplan.
 107

d
ted

 a
st

ame

ed

 a
Test
A named series of actions executed as a group. A test can contain
execute, setup/cleanup, and switching actions.

To be meaningful, most tests use a limits checking feature that
determines if the unit under test passed or failed the test. Also, most tests
use a datalogging feature to store information collected during the test.

Test Executive
A software tool used to develop tests, assemble them into a testplan, run
the testplan, and evaluate the pass/fail results.

Test group
An optional, named set of tests executed in a predefined order. Each test
group can have an associated list of setup/cleanup actions that do setup
and cleanup tasks for all the tests bounded by the test group, and a list of
switching actions. A test group is bounded by “testgroup <name>” an
“end testgroup” statements inside a testplan. Test groups can be nes
inside test groups.

Test limits
The acceptable boundaries for a test. For example, if the results from
test are less than the lower limit or greater than the upper limit, the te
fails. A test can have more than one set of limits, where each set is
associated with a named variant, such as “Hot” or “Cold.”

Test procedure
A group of measurement routines that comprise a test; i.e., another n
for a test.

Testplan
A named sequence of tests executed in a predefined order to test a
specific device or unit under test. A testplan also can be further divid
into groups of tests called “test groups.”

UUT (unit under test)
The unit, module, device, etc. being tested. Sometimes referred to as
DUT, or device under test.
108

its.

d

ht

,

ey let

ther
Variant
A mechanism that lets you specify which named variation on a testplan is
executed when you run the testplan. Because the let you use one testplan
with n different sets of test limits and parameters, variants are useful
where one UUT is very similar to another except for slightly different
values for its test limits or parameters.

Each variant lets you:

• Use the same sequence of tests with different parameters and lim

For example, you may want to specify different limits for various
temperatures at which the tests are executed.

• Control which set of tests is executed for a given testplan.

For example, the set of tests used by Quality Control may be a
superset of the tests used by Production.

• Change the testing algorithm as desired.

For example, a testing algorithm used by Quality Control may nee
greater precision than a testing algorithm used by Production.

The name of the default variant is Normal. Other typical variants mig
be named Hot or Cold.

VXIplug&play
An industry standard that lets you program standalone and VXIbus
instruments using various programming languages, such as HP VEE
Visual Basic, and Visual C++. VXIplug&play drivers have a consistent
architecture, and are developed and used in a consistent fashion. Th
vendors of instruments develop drivers for their own instruments, and
ensure that those drivers are interoperable with drivers provided by o
vendors.

Wire
A bus or other connection in the switching topology.
 109

Index

A
action

choosing which kind to use, 73
defined in Glossary of Terms, 100
execute, 61, 69
handling exceptions within actions, 80
library, 95
order of execution within a test, 72
paired structure, 71
setup, 61
setup/cleanup, 69
specifying which to use for limits

checking, 65
switching, 69, 76, 77

Action Definition Editor, 12
defined in Glossary of Terms, 100

action library, 95
action style

defined in Glossary of Terms, 100
adjacency

defined in Glossary of Terms, 101
adjacent elements

in switching topology, 84
alias

defined in Glossary of Terms, 101
in switching topology, 86

All Public option when searching
symbol tables, 39

B
branching

complex in a testplan, 54
on a passing or failing test, 51
on an exception, 52

C
checking pass/fail limits for a test, 62
code reuse, 17
controlling the flow of testing, 50
controlling what happens the first time a

testplan runs, 50
custom tools

using to enhance HP TestExec SL, 42

D
data container

defined in Glossary of Terms, 101
datalogging

defined in Glossary of Terms, 101
default password

for logging in on Windows 95, 27
for logging in on Windows NT, 32

DLL (dynamic link library)
defined in Glossary of Terms, 102

E
error handling

branching on an exception, 52
exception

handling via actions, 80
handling via Exception sequence, 79
how HP TestExec SL handles, 79
overview, 79
where to handle, 80

Exception sequence, 53, 79
things to know when using, 53

execute action, 61, 69
defined in Glossary of Terms, 102

F
flow control statement, 50

syntax for accessing symbols from, 50

G
global variables in testplans, 58

H
hardware handler, 88

defined in Glossary of Terms, 102
hot switching, 77
HP BASIC for Windows

installation considerations on
Windows 95, 26

installation considerations on
Windows NT, 32

HP TestExec SL
Action Definition Editor, 12
112

enhancing via custom tools, 42
installing on Windows 95, 25
installing on Windows NT, 30
overview, 10
running on Windows 95, 27
running on Windows NT, 32
Switching Topology Editor, 13
system requirements for running on

Windows 95, 24
system requirements for running on

Windows NT, 29
Test Executive, 10
using to control hardware, 88
using to control switching, 88

HP VEE
system administration considerations

on Windows 95, 26
system administration considerations

on Windows NT, 31

I
initialization file

where to find a default copy of, 25, 30
installing HP TestExec SL

notes about installing a new version
over an old version, 24, 29

on Windows 95, 25
on Windows NT, 30

K
keyword

defined in Glossary of Terms, 102

L
layers in switching topology, 85
library

action, 95
contents, 97
defined in Glossary of Terms, 102
development versus production, 96
overview, 94
test, 94
using to manage tests & actions, 94
what belongs in, 97

limits
defined in Glossary of Terms, 108

limits checker
defined in Glossary of Terms, 103

limits checking, 62
shortcut when specifying test limits,

40
specifying which action to use for, 65

logging in
on Windows 95, 27
on Windows NT, 32

M
Main sequence, 53
model for switching topology, 85
module

defined in Glossary of Terms, 103
in switching topology, 86

multiple personalities in a testplan, 56

N
node

in switching topology, 83

O
On Fail Branch To feature, 52
On fail goto test, 52
operator interface

defined in Glossary of Terms, 104

P
paired structure in actions, 71
parameter

specifying properties for, 37
parameter block

defined in Glossary of Terms, 104
password

default for logging in on Windows 95,
27

default for logging in on Windows
NT, 32

path
switching, 76
113

profiler
defined in Glossary of Terms, 104

R
relationship between tasks & data, 36
results from a test, 62

displayed as reals, 67
reusable code, 17
routine type

defined in Glossary of Terms, 104
running HP TestExec SL

on Windows 95, 27
on Windows NT, 32

S
sequence

Exception, 53, 79
Main, 53

SequenceLocals symbol table, 58
sequencing of tests, 49
setup action, 61
setup/cleanup action, 69

defined in Glossary of Terms, 105
skipping tests if a failure occurs, 52
statement

for controlling the flow of testing, 50
switching, 82

action, 77
controlling during a test, 76
hot, 77
switching element, 83

switching action, 69, 76, 77
defined in Glossary of Terms, 105

switching element, 83
defined in Glossary of Terms, 105

switching handler, 88
defined in Glossary of Terms, 105
where to get, 93

switching path, 76
defined in Glossary of Terms, 105

switching state
defined in Glossary of Terms, 106

switching topology
defined in Glossary of Terms, 106

details, 83
establishing the relationship among

switching actions, switching
topology layers, switching
handlers & switching hardware, 91

Switching Topology Editor, 13
three-layer model, 85

Switching Topology Editor, 13
defined in Glossary of Terms, 106

switching topology layer
defined in Glossary of Terms, 106

symbol
searching for in symbol tables, 39
specifying properties for, 37
syntax for accessing from flow control

statements, 50
symbol table, 45

defined in Glossary of Terms, 107
SequenceLocals, 58
syntax for accessing symbols from

flow control statements, 50
TestStepLocals, 75

system administration
considerations for HP VEE on

Windows 95, 26
considerations for HP VEE on

Windows NT, 31
system requirements

for running HP TestExec SL on
Windows 95, 24

for running HP TestExec SL on
Windows NT, 29

T
test

branching on a passing or failing, 51
contents, 61
defined in Glossary of Terms, 108
execution details, 73
library, 94
limits checking, 62
order of execution of actions within,

72
overview, 61
passing results between actions, 75
114

shortcut when specifying test limits,
40

skipping if a failure occurs, 52
using to control switching, 76
viewing the details, 73

test development environment
how the software tools interact, 20
overview, 19
working in, 36

Test Exec SL. See "HP TestExec SL"
Test Executive, 10

defined in Glossary of Terms, 108
test group, 46

defined in Glossary of Terms, 108
viewing or modifying actions

associated with, 48
test library, 94
test limits

defined in Glossary of Terms, 108
shortcut when specifying, 40

test procedure
defined in Glossary of Terms, 108

testplan
branching on a passing or failing test,

51
branching on an exception, 52
complex branching, 54
contents, 46
controlling the sequencing of tests, 50
controlling what happens the first time

a testplan runs, 50
defined in Glossary of Terms, 108
global variables, 58
multiple personalities, 56
overview, 46
sequencing of tests, 49
test group, 46
variant, 55

TestStepLocals symbol table, 75
three-layer model for switching

topology, 85
tools

adding custom tools to HP TestExec
SL, 42

topology. See "Switching Topology"

U
UUT (unit under test)

defined in Glossary of Terms, 108

V
variant

defined in Glossary of Terms, 109
using, 55

VXIplug&play
defined in Glossary of Terms, 109

W
wire

defined in Glossary of Terms, 109
in switching topology, 86
115

	1 Introduction to HP TestExec SL
	What is HP TestExec SL?
	What Makes HP TestExec SL Different?
	The Benefits of Reusable Code
	Why Code Is Not Reused
	How HP TestExec SL Encourages Reusability

	The Test Development Environment
	Overview
	How the Software Tools Interact

	About System Integration

	2 Installing & Running HP TestExec SL
	Installing & Running on Windows 95
	System Requirements
	Notes About Installing a New Version Over an Old Version
	To Install the Software on Windows 95
	HP VEE Considerations
	HP BASIC for Windows Considerations
	To Run HP TestExec SL on Windows 95
	To Uninstall HP TestExec SL on Windows 95

	Installing & Running on Windows NT
	System Requirements
	Notes About Installing a New Version Over an Old Version
	Installing the Software
	To Install HP TestExec SL on Windows NT 3.51
	To Install HP TestExec SL on Windows NT 4.0 or later

	HP VEE Considerations
	HP BASIC for Windows Considerations
	To Run HP TestExec SL on Windows NT
	Uninstalling the Software
	To Uninstall HP TestExec SL on Windows NT 3.51
	To Uninstall HP TestExec SL on Windows NT 4.0 or later

	3 Concepts
	Working in the HP TestExec SL Environment
	Understanding the Relationship Between Tasks & Data
	Specifying the Properties for Parameters & Symbols
	Understanding the Two Views of Test Limits
	Using Custom Tools to Enhance the Environment

	About Testplans, Test Groups, Tests & Actions
	A Closer Look at Testplans
	What is a Testplan?
	What's Inside a Testplan?
	Test Groups
	What is a Test Group?
	Why are Test Groups Useful?

	Sequencing & Flow Control
	Flow Control Statements
	Using Symbols with Flow Control Statements
	Branching on a Passing or Failing Test
	Branching on an Exception
	More Complex Branching

	Testplan Variants
	Global Variables in Testplans

	A Closer Look at Tests
	What is a Test?
	What's Inside a Test?
	Limits Checking
	Parameter Passing

	A Closer Look at Actions
	What is an Action?
	What's Inside an Action?
	Paired Structure in Actions
	Which Kind of Action Do You Need?
	Passing Results Between Actions Inside Tests
	How Actions Control Switching

	About Exceptions
	What is an Exception?
	How Does HP TestExec SL Handle Exceptions?
	Where Should I Handle Exceptions?

	About Switching Topology
	What is Switching?
	What is Topology?
	How Switching & Topology Interact
	A Closer Look at Switching Topology
	Switching Paths
	The Three�Layer Model for Switching Topology

	About Hardware Handlers
	Hardware Handlers in General
	Switching Handlers in Particular
	What’s Inside a Hardware Handler?
	How Do Switching Actions Use Switching Handlers?
	Where Do I Get a Hardware Handler?

	About Test & Action Libraries
	Libraries in General
	Test Libraries
	Action Libraries
	Development Versus Production Libraries

	What Belongs in a Library?

	Glossary of Terms
	Index

