Contents

HP TestExec SL Getting Started Book
E2011-90017 — Software Rev. 3.00 — Rev. E - January, 199

1. Introduction to HP TestExec SL

What iISHP TESIEXEC SL2......eeiiiirieieeesese e
What Makes HP TestExec SL Different?........ccccevvevevevicecce e
The Benefits of Reusable Code..........cooveveiviieiicece e
Why Code ISNOt REUSEcccoiieiiecie e
How HP TestExec SL Encourages Reusability..........cccccevevieeiiennnene
The Test Development ENVIrONMENtccccoevveeeceniieesee e e
(@ oY= SO
How the Software TOoIS INteract.........cccccvvvveeveieeie e
About System INtEgrationcceveeieii e

2. Installing & Running HP TestExec SL

Installing & Running on Windows 95..........ccccveeveiecciccie e
SyStEmM REQUITEMENTS......c.eeiveieiiie e
Notes About Installing aNew Version Over an Old Version............
To Install the Software on Windows 95.........oooveeeeeivceie e,
HP VEE CONSIAEIalioNSccviieitiiecereeeesreeee s sireee s ssiee e s sssaae s ssraneeas
HP BASIC for Windows Considerations.........cccocuveeeivveeeessveeeessnnes
ToRun HP TestExec SL on WIindows 95.........c.ooeeeeiiieicieeccieee e
To Uninstall HP TestExec SL on Windows 95.........coceeeveeeeveeciieeens

Installing & Running on WindowS NTccccooveieveiienece e
SyStEM REQUITEMENES.....ccuveiiecee e s e st se e e sreens
Notes About Installing aNew Version Over an Old Version...........
Installing the SOftWar€...........coce e

To Instal HP TestExec SL on Windows NT 3.51.........cccceeeveene
ToInstal HP TestExec SL on Windows NT 4.0 or later.............
HP VEE CONSIAErationS........ccoueieuieiiieciiieiieecctiesieeesteessveeesreeeseeens
HP BASIC for Windows Considerations.........ccccccueeeeevveeeessvenee s
To Run HP TestExec SL on WIindowWS NTcooceeeiivieee e,
Uninstalling the SOftWare.........ccccoeveeve e
To Uninstall HP TestExec SL on Windows NT 3.51
To Uninstall HP TestExec SL on Windows NT 4.0 or later

10
15

3. Concepts

Working inthe HP TestExec SL Environmentcccccceeeieeveeneevnee, 36
Understanding the Relationship Between Tasks & Data.................. 36
Specifying the Properties for Parameters & Symbols....................... 37
Understanding the Two Views of Test LimitS........cccocevvevveveieenene, 40
Using Custom Tools to Enhance the Environment...............cccccevee.. 42

About Testplans, Test Groups, Tests & ACHONS........ccccccvvvevieeceeceesieene 44

A Closer LOoK at TESIPIANS......cccviieiiecee e 46
What iSaTeStPIANTccviieecece et 46
What's Inside a TeStPlan?.......ccccvcveeieevie e 46

TESE GIOUPS. .. vee ittt ettt sttt nn e s eeas 46
What iSATESt GIrOUP?ecuveveiriesiecie et ete et e st seeenis 46

Why are Test Groups USeful?.........ccoveceveveececiceccece e 48
Sequencing & FIow Controlccccecviieicecie e 49
Flow Control Statements..........ccecerereereneeie e 50

Using Symbols with Flow Control Statements....................... 50
Branching on aPassing or Failing Test.........ccccecvvvevevieeeenen. 51
Branching on an EXCEPLioN.........ccccvveeveviecie e 52

More Complex BranChingccccceveveeeeieseceseeee s 54
Testplan VariantS.......ccoveieeiee et 55
Global Variables in TESIPIaNS.......ccovveeeiieeiie e 58

A CloSEr LOOK 8 TESES....eeueeeeiieieiesieeee e 61
WHaL IS @ TESE? ...t 61
What'S INSIAE @ TESE?.....ceeieeieeieeee e s 61
LimitsS ChECKINGcvveveiieiiece et 62
Parameter Passingcccceceeiieieeiiesee e e et e e e see e e 65

A Closer LOOK @l ACLIONS.cciiiiieieeieeieee e 69
What 1SN ACHIONT ...t 69
What's INSide @ ACHONT?.......ccoviiiiieiesie e 69
Paired Structure in ACHIONSccveveiiirireese s 71
Which Kind of Action Do You Need?........ccccooverenininenc e 73
Passing Results Between Actions Inside TEStS......ccoovveeveeceevveenee. 75
How Actions Control SWitChingccccceveeieiiiniie e 76

ADOUL EXCEPLIONS ..ot s 79
What 1S an EXCEPLIONT?......ccviieeceeeceiee et 79
How Does HP TestExec SL Handle Exceptions?............ccccceeeveneeee. 79
Where Should | Handle EXCEPLIONS?cocveveviie v 80

About SWitching TOPOIOGYcccuiiieiieiieeiee e 82

What IS SWItChiNG?.......eoiie e 82
What 1S TOPOIOGY? ...eeveiveetiee et 82
How Switching & Topology INteractcccevvveevevieieece e, 82
A Closer Look at Switching Topologyccecveveevveieeiesesieie s 83
SWItChing PathS.........ccueiiiiieie e 83
The Three-Layer Model for Switching Topology.........cccceevuveee.. 85
About Hardware Handlers..........ccccveveieccie e 88
Hardware Handlersin Generalccccccvvvvevecieecs s 88
Switching Handlersin Particular............cccoveeeveiicie i 88
What's Inside a Hardware Handler?.............cccccccviiiiiiiiiiieiiccieee, 89
How Do Switching Actions Use Switching Handlers? 91
Where Do | Get a Hardware Handler?ccccooeiviiiiiieiiiin e, 93
About Test & Action Librariescccoooovieiiiiiiiii e, 94
Libraries in GENEIAl...........uuuuviiiiiiiiiiiiiiiiiiiiee e eee e e e e e e aaees 94
TSt LIDrari©sS. . ..uuueieeiiiiiieeeeee e, 94
ACHION LIDFari©S. .. .vuvviiiiiiiiiieiiieiiiie ettt 95
Development Versus Production Librariescccoeeeeevviviiiiinnnnnn. 96
What Belongs in a Library?.........coiiiiiiiciii e 97
GlOSSArY Of TEIMS....ecuice et 99
T L= S 111

Notice

The information contained in this document is subject to change without
notice. Hewlett-Packard Company (HP) shall not be liable for any errors
contained in this document. HP makes no warranties of any kind with regard
to this document, whether express or implied. HP specifically disclaimsthe
implied warranties of merchantability and fitness for a particular purpose.
HP shall not beliable for any direct, indirect, special, incidental, or
consequential damages, whether based on contract, tort, or any other legal
theory, in connection with the furnishing of this document or the use of the
information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights L egend

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rightsin Technical
Data and Computer Software clause of DFARS 252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.SA.

Rightsfor non-DOD U.S. Government Departments and Agencies are as set
forthin FAR 52.227-19 (¢) (1,2).

Use of this manual and magnetic media supplied for this product are
restricted. Additional copies of the software can be made for security and
backup purposes only. Resale of the software in its present form or with
aterationsis expressly prohibited.

Copyright © 1995 Hewlett-Packard Company. All Rights Reserved.

Note

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company.

Microsoft® and MS-DOS® are U.S. registered trademarks of Microsoft
Corporation.

Windows, Visual Basic, ActiveX, and Visual C++ are trademarks of
Microsoft Corporation in the U.S. and other countries.

LabVIEW® is a registered trademark of National Instruments Corporation.
Q-STATS Il is a trademark of Derby Associates, International.

RoboHELP is a registered trademark of Blue Sky Software Corporation in
the USA and other countries.

Printing History
E1074-90000 — Software Rev. 1.00 — First printing - August, 1995
E1074-90005 — Software Rev. 1.50 — Rev. A - March, 1996

The documentation expanded into a multi-volume set of books at Rev. B.

E1074-90006 — Software Rev. 1.51 — Rev. B - June, 1996
E2011-90010 — Software Rev. 2.00 — Rev. C - January, 1997
E2011-90013 — Software Rev. 2.10 — Rev. D - May, 1997
E2011-90017 — Software Rev. 3.00 — Rev. E - January, 1998

About This Manual

This manual provides beginners with an introduction to HP TestExec SL. It
describes the product at an overview level, tells how to install and run the
HP TestExec SL software, and introduces concepts used in HP TestExec SL
and further described in the other users’ manuals.

Conventions Used in this M anual

Vertical bars denote a hierarchy of menus and commands, such as:

View | Listing | Actions
Here, you are being told to choose the Actions command that appears when
you expand the Listing command in the View menu.

If a form uses tabs to organize its contents, the name of a tab may appear in
the hierarchy of menus and commands. For example, the Options dialog box
has a tab named Search Paths. A reference to that tab looks like this:

View | Options | Search Paths

To make the names of functions stand out in text yet be concise, the names
typically are followed by “empty” parentheses—iMyFuncti on() —
that do not show the function’s parameters.

Some programming examples use the C++ convention for comments, which
is to begin commented lines with two slash characters, like this:

/1 This is a coment
C++ compilers also will accept the C convention of:
/* This is a comrent */

The C++ convention is used here simply because it results in shorter line
lengths, which make examples fit better on a printed page. If you are using a
C-only compiler, be sure to follow the C convention.

| ntroduction to HP TestExec SL

This chapter describes HP TestExec SL's features at a high level and broadly
describes system integration, which is the process of combining hardware and
software to create a test system.

Introduction to HP TestExec SL
What is HP TestExec SL?

What isHP TestExec SL?

HP TestExec SL is atest executive designed for high-volume,
high-throughput functional test applications. Its test development and
execution environment provides you with a choice of programming
languages, instrumentation, fast and flexible switch management, and a
customizable operator interface. It aso includes library features that
promote the maintenance and reuse of code.

HP TestExec SL contains three interrelated tools in a single environment:
» Test Executive

The Test Executive is used to develop tests and assemble them into
testplans. It also provides features for running and debugging testplans.
The Test Executive can have multiple personalities, which means its
appearance can change to suit the kind of task being done. For example,
it presents one appearance when used as a test development environment,
and another when used by production operators. Its personality is

10

Introduction to HP TestExec SL
What is HP TestExec SL?

determined by which login you use. The test development personality
shown below is used when developing tests.

% HP TestExec SL - Filter_tpa
File Edit Inset ¥iew Debug Options Window Help

O] % [==|E] 8] =] u] =] [@|F] &) E]m]

M Testplan Editor

Testplan Sequence: |4 zin - Test Mame: |Check Period

testgroup 170 Configure: Surarnary: I
testgroup Time Domain
tes ‘eriod
test Check Risetime

test Check Frequency
test Check Overshool
end testaroup
end testgroup

Test Paramaters | Actions | Limits | Options | Documentation |

test Check “oltage Peak lo Peak Actions for Test Check Period'

Insert.
Delete
Move Lip
Mave Dgwn

Details

Limit Checker: I I Mindtax

Bk e

;I Insert Switching

r Description of "Period"

This action measures the pe

viod of Ihe digitized signal

charinel @
module handle @

Edit Symbals.. |
- Parameters tor "Period"
Value Description u
restlt 0.000000000000 The result of the measu

TestPlanGlobals.Cha | Contains the channel nu
TestPlanGlobals Sco | The session identifier urLI

|[For Help, press F1

[Mamal] |

An aternative, operator personality is customizable to meet the needs of a
specific production environment. Its default implementation, which provides

11

Introduction to HP TestExec SL
What is HP TestExec SL?

the basic control features and status information needed in a typical
production environment, is shown below.

| Test Exec 5L Functional Test Station I

 Testplan
e [-] g
Wariant: -
| E -
 UUT Information
UUT Marme: UUT Mame
Serial Mumber: Start
- Test Statu:
System State: Idle
UUT Test Resul: Unknown.
Stop
Last Test Time: 0:00:00:00
Average Test Time: 0:00:00:00
Module Passed Since Startt: 0
Module Failed Since Start: 1}
Operator: wild Lagin
r Sypstem Meszage
Please select a testplan from the testplan name field. Exit
Test Beport Shown: [

« Action Definition Editor

The Action Definition Editor is used to create actions, which are the
building blocks from which tests are created. It lets you add code written

12

Introduction to HP TestExec SL
What is HP TestExec SL?

in the programming language of your choice into the framework of
HP TestExec SL.*

% HP TestExec SL - frequencyp.umd -- Action Definition Editor - DLL Style
File Edit Inseit Yiew Debug DOptions Window Help
Action Description;
equency
This action measures the frequency on ;I
Author: [mWxD the digitized wawefarm.
Library Name: lc_actiol’v— LI
- Kewword:
Trequency
ddds measuiement
Master: [ade -
arb Dalet
autozera ﬁl
counter LI
- Fiautin
© Setup/Cleanup & Execute
Satup: I
Execute; Ilrequency
Cleanup: I—
- Action Parameter.
The current result is: Ilasult vl
Name |Va|ue |Type Attributes Dg
module handle 0 Int32 Cq
result 0.000000000000 Real64 QUTPUT Th
channel 0 Int32 Cq
Add. Edit.. Dalste Maove Up | Maove Dovin |
For Help, press F1 4

Switching Topology Editor

The Switching Topology Editor is used to define switchable connections
(low-level hardware) and the wiring inside a fixture used with the Test

1. C/C++, HPBASIC for Windows, HP VEE, and National |nstruments
LabVIEW are supported.

13

Introduction to HP TestExec SL
What is HP TestExec SL?

Executive. Also, it isused to make the Test Executive aware of hardware
modules that are available as resources during testing.

* HP TestExec 5L - Fixture_ust [_ o] %]
File Edit Insert Yiew Debug Options Window Help

o= [£]=]E] @E] o] =] [@D]E] El]m]

-2% Fixture. ust H=E
E=Aliases
RS e[S e

% ggxg'épg‘l)\:l;e“er Description: [Name for the connection to the DC power 51

B DCIDC Converter -
CaWires

CIModules Kepwords: [aas, supply
Reference Laper: Fieference Node:
[ewstem =] [P5_muxz
Filter

ALL hd

[For Help, press F1 . P

14

Introduction to HP TestExec SL
What Makes HP TestExec SL Different?

What MakesHP TestExec SL Different?

Test executives have existed for as long as there has been a need to do

repeatable testing in a production environment. Traditionally, test executives

have been custom, “roll your own” programs whose features included
sequencing, testing, checking pass/fail limits, error handling, displaying
status information to users, and more. Tests were written in the same
programming language as the rest of the test executive. To keep the main
program from growing too large and unwieldy, tests usually were invoked by
calls to the functions or subroutines in which the tests resided.

One thing that makes HP TestExec SL unique in the world of test executives
is that it more clearly distinguishes between sequencing operations and
testing operations. Sequencing—i.e., executing tests in a repeatable order—
is handled via a graphical user interface that executes tests written in any of
several standard programming languages. Unlike typical test executives,

HP TestExec SL's sequencer has no programming language associated with
it. Instead, you use menu commands or icons to specify the sequence in
which tests execute, set up global variables used to pass values between
tests, and other features of testing.

In HP TestExec SL, tests are a highly structured concept. They combine
user-written measurement code with system-supplied limits checking,
datalogging, test report generation, and pre- and post-conditioning features.
Because the language in which you write tests is not dictated by the
language in which the test executive is implemented, you can write them in
any of several languages.

From the viewpoint of the sequencer, tests themselves are “atomic” insofar
as they cannot be divided into smaller units unless you write the code in
them that way. For example, you could conceivably use the sequencer to
execute one huge test that made multiple measurements and did everything.
But tests usually are small, and acquire and check only a single operating
parameter of the unit under test. Besides making tests more manageable, this
improves their reusability.

Another key difference of HP TestExec SL is that it is based on an
underlying technology from Hewlett-Packard called HP TestCore, which is
an open, standardized framework for creating or modifying test systems.

15

Introduction to HP TestExec SL
What Makes HP TestExec SL Different?

Using this framework lets Hewlett-Packard enhance the functionality and
performance of HP TestExec SL while maintaining a high degree of
compatibility with existing tests. Thisimproves the long-term usefulness of
the code you write today.

Flexibility is another major benefit that HP TestCore brings to HP TestExec

SL. If desired, your tests can make calls to numerous API (application
programming interface) functions that manipulate the hardware and data

used by your test system. For example, the easiest way to control switching
hardware is through graphical features built into HP TestExec SL. But if you

need even greater control over switching, such as when changing switching

paths “on the fly” in the middle of a test, you can call an API that provides
lower-level access to switching hardware. In a similar fashion, you can
control many other aspects of HP TestExec SL's operation at both high and
low levels.

16

Introduction to HP TestExec SL
The Benefits of Reusable Code

The Benefits of Reusable Code

Why Code |s Not Reused

Although developing the programming code in measurement routines—i.e.,
code that makes a measurement—can be time consuming, all too often the
finished routines must be regarded as unique rather than reusable. The lack
of standardized tools and methods makes it difficult to keep track of which
routines are available and their characteristics, such as what they do and who
wrote them. Another traditional problem with measurement routines is that
their form may differ substantially across the various programming and
application platforms. For example, a routine written in BASIC may look
very different from a routine written in ANSI C. This tendency to make each
measurement routine a custom application also limits its portability from one
environment to another.

In a similar fashion, test procedures—i.e., groups of measurement routines
that comprise a test—may not be reused. Prior to HP TestExec SL, test
developers typically wrote a single “test procedure” that contained all the
code required to do the tasks needed to measure a performance characteristic
of a specific unit. A group of test procedures executed in sequence became a
“test sequence” or “testplan.” Often, these test procedures and testplans did
the same kinds of tasks; for example, each might set up the instruments or
conditions needed for the measurement, make the measurement, evaluate the
results, and such. Although these procedures fundamentally tended to be
more alike than different, they seemed like poor candidates for reuse. For
example, their lack of modularity made them difficult to modify or maintain.
Also, there was no provision for managing them, which meant that other
potential users were unaware of their characteristics or, in many cases, of
their existence.

How HP TestExec SL Encourages Reusability

Continuing with the example of measurement routines and test procedures,
suppose that test developers had access to a well-maintained library of
measurement routines written in a standardized, reusable format that was
compatible across platforms. These routines might include those developed

17

Introduction to HP TestExec SL
The Benefits of Reusable Code

in-house or prewritten routines purchased from other vendors. Then atest
developer might create a testplan simply by choosing from a catalog of
existing routines and assigning a sequence to them. Because it reduces the
ongoing necessity to “reinvent the wheel,” this convenient reuse of
routines—i.e., reduction in programming effort—is a major benefit of
HP TestExec SL.

When existing measurement routines cannot meet the needs of the test
developer, HP TestExec SL's architecture provides standard methods for
modifying or enhancing existing measurement routines. Once these new
routines have been developed and debugged, they too become candidates for
reuse. Unlike traditional test routines, which may all be incorporated into a
single, large program, HP TestExec SL uses a modular approach that is easy
to modify and maintain.

Another benefit of HP TestExec SL is that it provides tools for administering
the collection—i.e., “library"—of measurement routines. For example, it is
easy to search for existing routines or procedures that have characteristics of
interest and then reuse or modify them. Because the administrative tools let
measurement developers declare the characteristics of their routines in the
registration library, those routines potentially are available to other users of
HP TestExec SL. This reusability of measurements and libraries of
measurements can be especially beneficial to organizations that have several
test systems based on HP TestExec SL.

18

Note

Introduction to HP TestExec SL
The Test Development Environment

The Test Development Environment

Overview

The Action Definition Editor and the Test Executive are the main tools used
when developing tests and, subsequently, testplans. Various editors and
forms appear in the software tools as needed when doing tasks associated
with test development. The Test Executive also provides features for
debugging tests and running testplans.

Action Definition Editor

1. Write
measurement . 2.Createactions |
. procedures L from _
in astandard measurement
programming .
language B prpcedures Test Executive
e T s
k'“ Iae e e
S Ed. Dalare Mzvz Up Fr Down

3. Createtests
from actions

v

4, Create
testplans
from tests

[T i

The most important concept to understand here is that developing testplans
is amulti-step process that requires multiple tools.

Although it does not appear in the diagram above, some test developers also
may use the Switching Topology Editor to define the test system hardware

19

Introduction to HP TestExec SL
The Test Development Environment

for subsequent use by the Test Executive in controlling switchable
connections between resources and the unit under test, or UUT.

How the Softwar e Tools | nter act

A high-level, conceptual example of how the software toolsinteract is

shown below.
' Test Executive !
|
Action Definition Editor i Testplan (".tpa")
C/C++ Compiler "umd" file mm— I Tests
".cpp" file =P ".dIl" file R
| Actions

Switching Topology Editor
C/C++ Compiler " ust" file m—
"-Cpp" ﬁle * ".dll" ﬁle

Instrumentation

optional |

The upper sequence shows how you can use a C/C++ compiler to create a

source file (“.cpp”) containing one or more functions that, when compiled
into an executable dynamic-link library (“.dll"), do useful tasks, such as set
up a power supply or make a measurement. Collectively, these functions are
called “action code” or “action routines.”

However, the Test Executive initially knows nothing about the DLL. You
must use the Action Definition Editor to create an “action definition” that
associates the DLL with descriptive information needed to use it. Each
action definition resides in a “.umd” file that, when used with the DLL,
forms an executable component called an “action.”

As the lower sequence shows, you also can create a DLL for an optional
component called a “hardware handler,” which is a software layer that
enhances HP TestExec SL's interaction with hardware, such as a relay matrix

20

Introduction to HP TestExec SL
The Test Development Environment

in a switching module. In this case, a hardware handler contains functions
the Test Executive callsto interrogate and control switching hardware.

The output from the Switching Topology Editor is a “.ust” file that describes
a layer of connections called “switching topology” associated with system
resources, connections between the test system and the UUT, or the UUT
itself. Used together, a hardware handler for a switching module and a “.ust”
file provide information the Test Executive needs if you wish to use its
graphical features to control switchable connections during testing, such as
connecting the UUT to power supplies, sources, and detectors.

The testplan, which resides in a “.tpa” file, is where these individual
elements are used together. A testplan is an ordered sequence of tests that
each contains one or more of the predefined actions described earlier.
Running the testplan executes tests containing actions that do tasks to test
the UUT.

As the testplan runs, actions in its tests control whatever instrumentation is
part of the test system. In a specific sense, “instrumentation” may mean a
DMM or a frequency counter, but in a more general sense it also includes
switching modules, or any other hardware needed to test the UUT.

21

Introduction to HP TestExec SL
About System Integration

About System Integration

Traditionally, the system integrator has been the person who assembiles, or
“integrates,” hardware and software to create a complete test system. Such
integration might include choosing the hardware, wiring and configuring it,
and writing the software needed to use the hardware for production testing.
In many ways, a test system assembled this way is a custom creation.

Another necessary role when creating a test system is that of the test
developer. A test developer creates and debugs tests used to verify or
characterize the operation of whichever kind of unit or module is being
tested. For example, one or more test developers might develop a series of
tests and then release them for use by a manufacturing line in a production
environment containing many test systems.

When you use HP TestExec SL as the basis for a test system, some of the
tasks you do can be considered “standard” or mandatory insofar as they
always must be done before the test system can be used. Examples of these
kinds of tasks include making the connections between the system hardware
and the unit under test—often referred to as “fixturing"—and using the Test
Executive to write tests that control the hardware.

Other kinds of tasks might be considered truly custom or optional because
they are not necessarily done by most system integrators. Examples of these
include customizing the operator interface and writing hardware handlers.
These custom tasks tend to be more complex than standard tasks, and may
require specific skills beyond those needed to do the standard tasks.

You probably will need to do the standard tasks before you can use the test
system, while the optional tasks may not be necessary or can be done later
when you are more familiar with the test system. Or, you may want to
distribute the system integration tasks—such as separating the system
integrator and test developer roles—and have each person read the
appropriate topics in HP TestExec SL's documentation.

22

Installing & Running HP TestExec SL

This chapter describes how to install and run HP TestExec SL on the
Windows 95 and Windows NT platforms.

See Chapter 6 in the Using HP TestExec S book for system administration
topics.

23

Installing & Running HP TestExec SL
Installing & Running on Windows 95

Installing & Running on Windows 95

System Requirements

The hardware and software needed to install and run HP TestExec SL on
Windows 95 are;

IBM-compatible PC (486 or faster) with at least 16 MB of RAM
CD-ROM drive
1024 x 768 graphics

At least 100 MB of free hard disk space (approx. 35 MB for the
HP TestExec SL software)

Microsoft Windows 95

Notes About Installing a New Version Over an Old
Version

1.

HP TestExec SL stores various configuration settings in its initialization
file, “<HP TestExec S home>\bin\tstexcsl.ini”. Because this

initialization file may contain custom settings you wish to keep, a new
installation of HP TestExec SL does not replace an existing initialization
file, nor does it modify its contents.

However, this conservative approach to updating means that new features
that require additional entries in the initialization file are not
automatically added. Thus, you must add them manually as follows:

Because newer versions of HP TestExec SL may include new features
that require entries in the initialization file, we recommend that you do
the following prior to installing a new version of HP TestExec SL over an
old version:

* Move the existing initialization file to a different location.

24

Note

Note

Installing & Running HP TestExec SL
Installing & Running on Windows 95

* |nstall the new version of HP TestExec SL.

» Use a text editor, such as WordPad in its text mode, to compare the
contents of the old and new initialization files. If the old file has
different configuration settings that you wish to keep, add them to the
new file.

2. If you wish to keep an older version of HP TestExec SL on your system
when installing a new version, install the new version to a new location
to keep if from overwriting existing files. Then edit the “[HP TestExec
SL]” entry in the “win.ini” file, which is located wherever you installed
Windows, to identify which version of HP TestExec SL to run.

If you do a Custom installation below and install the original configuration
files, you can find a default copy of the initialization file, the datalogging
format files, and others in directory e TestExec S
home>\DefaultConfiguration”.

To Install the Software on Windows 95

Theinstallation CD-ROM supplied with HP TestExec SL also supports
installing HP TestExec SL across a network to any disk visible within
Windows, such as to a shared disk on another PC.

1. Insert the HP TestExec SL CD-ROM in your CD-ROM drive.

2. Open the Windows 95 Control Panel (located by default in the “My
Computer” folder).

3. Choose the Add/Remove Programs icon.
4. Choose the Install button.

5. Follow the instructions that appear and specify the “setup.exe” program
on the CD-ROM as the installation program to use.

25

Note

Installing & Running HP TestExec SL
Installing & Running on Windows 95

6. Follow the instructions that appear when the installation program runs.

If you will be developing actionsin HP BASIC for Windows, choose the
Custom installation option and install the modules needed by HP BASIC for
Windows. If you wish to have default copies of the various configuration
files used by HP TestExec SL available, choose the Custom installation
option and install them.

HP VEE Considerations

HP TestExec SL communicates with HP VEE via a high-speed Remote
Procedure Call (RPC) mechanism based on the industry-standard Transport
Control Protocol (TCP). Thisisthe same mechanism used by HP VEE to

invoke other HP V EE servers when using the Import Library object to load
remote functions. Because the communication between HP TestExec SL and

HP VEE is transparent from a user’s perspective, your only task is to write
the HP VEE function library itself.

Before HP TestExec SL and HP VEE can work together, you must have the
HP VEE Service Manager programeesm, running on your PC. You

probably will want to place a shortcut to this program in your “Startup”
group to make it start automatically with Windows 95.

Beside having the Service Manager running, you need an entrgefon in
your "\windows\services" file, which might look like this:

veesm 4789/ tcp # HP VEE service manager
See the HP VEE documentation for details.

HP BASIC for Windows Consider ations

When you install HP TestExec SL, it looks for HP BASIC for Windows on
your system. If it finds HP BASIC for Windows, HP TestExec SL installs
additional files needed to develop actions in HP BASIC for Windows.

Given the abovéf you install HP BAS C for Windows after installing
HP TestExec S you will be missing some files that you need. In this case,
simply do a partial reinstallation of HP TestExec SL via the Custom

26

Note

Installing & Running HP TestExec SL
Installing & Running on Windows 95

installation option and specify that only the HP BASIC for Windows files
should beinstalled.

To Run HP TestExec SL on Windows 95

1. Launch HP TestExec SL from its folder in the taskbar’s Start menu.

43

2. When HP TestExec SL starts, it prompts you to log in. You must provide
a valid login name and password.

Type “administrator” in the Name field. It requires no password.

Tip: You probably will want to add a password later to provide additional
security for your test system.

3. Once you have logged in, you will be presented with a list of groups to
which your login belongs. Choose “Developer” from the list.

The personality of the Test Executive's user interface—e.g., test
development or production operator—is determined by which login group
you use.

Tip: If you want the test development environment to run each time
Windows 95 runs, create a shortcut téd= TestExec SL
home>\bin\tstexcsl.exe” and place it in the Windows 95 “Startup” folder.

To Uninstall HP TestExec SL on Windows 95

1. Open the Windows 95 Control Panel (located by default in the “My
Computer” folder).

2. Choose the Add/Remove Programs icon.

27

Installing & Running HP TestExec SL
Installing & Running on Windows 95

3. Inthelist of applications that appears in the Add/Remove Programs
dialog box, choose “HP TestExec SL” as the application to be removed.

4. Click the Add/Remove button and follow the instructions that appear.

28

Installing & Running HP TestExec SL
Installing & Running on Windows NT

Installing & Running on Windows NT

System Requirements

The hardware and software needed to install and run HP TestExec SL on
Windows NT are;

» |IBM-compatible PC (486 or faster) with at least 32 MB of RAM
 CD-ROM floppy disk drive
« 1024 x 768 graphics

e Atleast 100 MB of free hard disk space (approx. 35 MB for the
HP TestExec SL software)

* Microsoft Windows NT version 3.51 or later

Notes About Installing a New Version Over an Old
Version

1. HP TestExec SL stores various configuration settings in its initialization
file, “<HP TestExec S home>\bin\tstexcsl.ini”. Because this
initialization file may contain custom settings you wish to keep, a new
installation of HP TestExec SL does not replace an existing initialization
file, nor does it modify its contents.

However, this conservative approach to updating means that new features
that require additional entries in the initialization file are not
automatically added. Thus, you must add them manually as follows:

Because newer versions of HP TestExec SL may include new features
that require entries in the initialization file, we recommend that you do
the following prior to installing a new version of HP TestExec SL over an
old version:

* Move the existing initialization file to a different location.

29

Note

Note

Installing & Running HP TestExec SL
Installing & Running on Windows NT

* |nstall the new version of HP TestExec SL.

» Use a text editor, such as WordPad in its text mode, to compare the
contents of the old and new initialization files. If the old file has
different configuration settings that you wish to keep, add them to the
new file.

2. If you wish to keep an older version of HP TestExec SL on your system
when installing a new version, install the new version to a new location
to keep if from overwriting existing files. Then edit the “[HP TestExec
SL]” entry in the “win.ini” file, which is located wherever you installed
Windows, to identify which version of HP TestExec SL to run.

If you do a Custom installation below and install the original configuration
files, you can find a default copy of the initialization file, the datalogging
format files, and others in directory e TestExec SL
home>\DefaultConfiguration”.

Installing the Software

Theinstallation CD-ROM supplied with HP TestExec SL also supports
installing HP TestExec SL across a network to any disk visible within
Windows, such as to a shared disk on another PC.

To Install HP TestExec SL on Windows NT 3.51

1. Insert the HP TestExec SL CD-ROM in your CD-ROM drive.

2. Use the Program Manager to run the “setup.exe” program on the
CD-ROM.

3. Follow the installation instructions that appear.

Tolnstall HP TestExec SL on WindowsNT 4.0 or later

1. Insert the HP TestExec SL CD-ROM in your CD-ROM drive.

30

Note

Installing & Running HP TestExec SL
Installing & Running on Windows NT

2. Open the Windows NT Control Panel (located by default in the “My
Computer” folder).

3. Choose the Add/Remove Programs icon.
4. Choose the Install button.

5. Follow the instructions that appear and specify the “setup.exe” program
on the CD-ROM as the installation program to use.

6. Follow the instructions that appear when the installation program runs.

If you will be developing actions in HP BASIC for Windows, choose the
Custom installation option and install the modules needed by HP BASIC for
Windows. If you wish to have default copies of the various configuration
files used by HP TestExec SL available, choose the Custom installation
option and install them.

HP VEE Considerations

HP TestExec SL communicates with HP VEE via a high-speed Remote
Procedure Call (RPC) mechanism based on the industry-standard Transport
Control Protocol (TCP). This is the same mechanism used by HP VEE to
invoke other HP VEE servers when using the Import Library object to load
remote functions. Because the communication between HP TestExec SL and
HP VEE is transparent from a user’s perspective, your only task is to write
the HP VEE function library itself.

Before HP TestExec SL and HP VEE can work together, you must have the
HP VEE Service Manager programeesm, running on your PC. You

probably will want to execute this program from your “Startup” group
(Windows NT 3.51) or create a shortcut to it in the “Startup” folder
(Windows NT 4.0 or later) to make it start automatically with Windows NT.

Beside having the Service Manager running, you need an entrgeson in
your "\windows\services" file, which might look like this:

veesm 4789/ tcp # HP VEE service manager

See the HP VEE documentation for details.

31

Note

Note

Installing & Running HP TestExec SL
Installing & Running on Windows NT

HP BASIC for Windows Consider ations

When you install HP TestExec SL, it looks for HP BASIC for Windows on
your system. If it finds HP BASIC for Windows, HP TestExec SL installs
additional files needed to develop actionsin HP BASIC for Windows.

Given the above, if you install HP BAS C for Windows after installing
HP TestExec S you will be missing some files that you need. In this case,
simply do apartia reinstallation of HP TestExec SL viathe Custom
installation option and specify that only the HP BASIC for Windows files
should beinstalled.

To Run HP TestExec SL on Windows NT

1. Launch HP TestExec SL from the HP TestExec SL group in the Program
Manager (Windows NT 3.51) or from its folder in the taskbar’s Start
menu (Window NT 4.0 or later).

&

2. When HP TestExec SL starts, it prompts you to log in. You must provide
a valid login name and password.

Type “administrator” in the Name field. It requires no password.

You probably will want to add a password later to provide additional
security for your test system.

3. Once you have logged in, you will be presented with a list of groups to
which your login belongs. Choose “Developer” from the list.

The personality of the Test Executive's user interface—e.g., test
development or production operator—is determined by which login group
you use.

32

Installing & Running HP TestExec SL
Installing & Running on Windows NT

Tip: If you want the test development environment to run each time
Windows runs, either execute® TestExec SL home>\bin\tstexcsl.exe” in
the “Startup” group (Windows NT 3.51) or create a shortcut to it in the
“Startup” folder (Windows NT 4.0 or later).

Uninstalling the Software

To Uninstall HP TestExec SL on Windows NT 3.51

1. Open the HP TestExec SL program group.

2. Double-click the “Uninstall” icon and follow the instructions that appear.

To Uninstall HP TestExec SL on Windows NT 4.0 or later

1. Open the Windows NT Control Panel (located by default in the “My
Computer” folder).

2. Choose the Add/Remove Programs icon.

3. In the list of applications that appears in the Add/Remove Programs
dialog box, choose “HP TestExec SL” as the application to be removed.

4. Click the Add/Remove button and follow the instructions that appear.

33

Concepts

This chapter introduces concepts and terminology you need to understand
before using HP TestExec SL. Although features of the software tools are
shown here to make you aware of them, the details of their use are described in
the Using HP TestExec S book.

35

Concepts
Working in the HP TestExec SL Environment

Working in the HP TestExec SL Environment

This section provides an overview of several key features of HP TestExec
SL's user interface. An awareness of these features is useful because you will
encounter them frequently.

Under standing the Relationship Between Tasks & Data

Many of your test development tasks will be done using the Testplan Editor
window, which is shown below. Generally speaking, this window is divided
into a left pane that contains a sequence of tasks, such as a series of tests to
execute, and a right pane that contains data associated with sequenced tasks,
such as the details of those tests.

w Testplan Editor - |CO] X
Testplan Sequence: IMam ;I Test Marne: |Chgck Period
Summary:
! Tabs
Test Parameters | Actions | Limits | Options I Drocumentation I
test Check Voltage Peak to Peal
test Check Frequency est Check Penod Insert..
best Check Dwershaot T b
next Delete
Move Up
Mo Do
Detailz
- Insert Switching
Limit Checker: IMlnf’Max j
- Desciiption of "Period™
T hiz action measures the periad of the digitized sighal.
Edit Spmboks . |
r Parameters for "Period"
M arne Walug Description ILI
tesult 0.000000000000 The result of the measw
charnel @TestPlanGlobalz. Cha | Contains the channel n
rodule handle @TestPlanGlobals Sco | The session identifier ur ;I
A A
l |
Sequencing Data associated with sequencing

36

Concepts
Working in the HP TestExec SL Environment

Because the right pane contains many features, its functionality is organized
into logical groups by tabs you can select to display specific subsets of
options and data.

Specifying the Propertiesfor Parameters & Symbols

Throughout HP TestExec SL, you will see recurring variations on a generic
“properties box” used to specify the characteristics of parameters and
symbols. These boxes have titles that begin with Insert or Edit, depending
upon the task. Examples include “Insert Symbol,” “Edit Symbol,”, “Insert
Parameter,” and “Edit Parameter.” Although you need not understand the
details of using these boxes yet, being familiar with them will be useful later.

Although the titles of the boxes varies, their appearance and usage is more
similar than different. Each box allows two basic definitions of data: as a

37

Concepts

Working in the HP TestExec SL Environment

value (aconstant) or asareferenceto asymbol in asymbol table. When used
to define or modify values, the box looks similar to this:

! Edit Symbol 'address" [x|

M arne: Iaddress Tupe: Iﬁ
Descriptiorn:
Logical address of the instrument. :I
=
¥ Constant Value 0 Reference a Symbol] Besult
- N
I I
I I
I I
I I
I I
\ Properties Area /
N o o s
ok LCancel |

Besides varying with the type of data being described, the appearance of the
Properties Area changes when you enable Constant Value or Reference a

Symbol.

Features of this box include:

Name

Type
Description

Constant Value

Reference a Symbol

The name of the parameter or symbol.
The data type of the parameter or symbol.
A textual description of the parameter or symbol.

If enabled, the parameter or symbol is a constant
whose characteristics are shown in the Properties
Area.

If enabled, the parameter or symbol is a reference
to a symbol stored in a symbol table, and the
characteristics of the reference are shown in the
Properties Area.

38

Concepts
Working in the HP TestExec SL Environment

Result/Output This button’s label varies. When it is Result,
enabling it means the parameter or symbol is used
to determine the pass/fail status of a test. When it
is Output, enabling it means the parameter or
symbol is used to return a value.

Properties Area A region of the form whose appearance varies
with the type of data because different types of
data have different attributes. For example, if the
data type is Int32 the Properties Area looks like
this:

% ConstantWalue € Reference a Symbal [T Output

" alue: |1|:|
¥ Restrict value Law |5 High |15|

And if the data type is Real64Array, it looks like

this:
& Constant¥alue € Reference a Symbol [Output
Plane: | Calurnt |‘| Rouw: |2 Set Dimensionz | | Clear Elements
¥ Festrict value Law |25— High I‘“:I

W alue:

|32 Enterl ¥ Increment

|EIEIE

As shown below, when a parameter or symbol
references a symbol table, the Properties Area
contains a list that shows the name of the
reference and a list of symbol tables to search for
the reference.

™ Constant Value @ Reference a Symbal [[] Resulk
Reference: IEhannEI LI Search: ISequenceLDcals LI

In the example above, the reference is to a symbol
named Channel inthe SequencelLocal s
symbol table.

39

Concepts

Working in the HP TestExec SL Environment

As shown below, dropping down the Search list
shows the names of the symbol tables you can
search. If you choose All Public, all the symbol
tables in the list are searched, and they are
searched in the order in which they appear in the
list.

™ Constant Value @ Reference a Symbol [Ot

Reference:; |Wavefu:urm Channel LI Search: | o R

All Public
TestStepLocalz
TestStepParms

Sequencelocals

System

Symbols that are available in the symbol table(s)
being searched appear when you drop down the
Reference list. The example below shows that when
you search All Public, symbols in all the symbol
tables (except for external symbol tables) appear in
the list.

™ Constant Walue @ Reference a Symbal [Qiatpuat

Reference:

v aveform Channel Search: I.-'l'-.II Public LI

W aveform Channel

TezstplanM ame

SenalMumber

ModuleT ype

Operatort arme

FisturelD hd

Wavef or nChannel , which is in the
Sequencelocal s symbol table, once again
appears in the Reference list because
Sequencelocal s is among the symbol tables
searched when Search is All Public.

Under standing the Two Views of Test Limits

HP TestExec SL provides two ways to view or modify the limits used to
decide whether tests pass or fail. The first, which probably isthe more

40

Concepts
Working in the HP TestExec SL Environment

straightforward to use, resides on the Limitstab in the right pane of the
Testplan Editor window, as shown below.

Test F'arametersl Actions | Limits |I:I|:|ti|:|n$| Du:u:umentatiu:unl

Limnit Checker: IMin.-"Ma:-d ;I
Lirnit W alues
Walue | ;I
b imirnLam (0. 000E00000000000
b airuim 0.000F 00000000000

Invoking this view of thetest limitsis as simple as choosing the Limits tab.

More experienced users may prefer the shortcut provided on the Actionstab,
which is shown next. The grid near the bottom of the Actions tab defaultsto
showing the parametersto actionsin the test, but a Limit Checker button lets
you quickly switch to viewing the test limits instead. Because this method

41

Concepts

Working in the HP TestExec SL Environment

reguires less switching among the tabs in the Testplan Editor window, it can
save time when working with alarge number of tests.

Tegt Parameters | Actions ||_\

Achiore for Test Theck, Peno

it | Dptiunsl D:u:umenlationl

"

“Feriod

Izt |

D alate

/V

;I Insert ﬁwitchingl

I_ Lirnit Ehecker:l 111l 2
Use this - Liescrption of "Period”
Thiz action measures the perad af the digitized signal ;I
button
to...
LI Edit Symbols... I
r Parameters for "Feriod"
Walue ‘ Dezcription I;I
rezult 0000000000000 The result of the meazu
channel ESequencelocal: Che Contains the channel e

IMln.fMa:-:

ﬂ Imaart Ewllchmgl

D escnption of "Limit"

LView Select a limit checker and specify the limit valuss, d
the limits
| =l | Edr symbas.. |
r Limit Value
TraE
Iininwnn (0. 0008000000000
b &irnumm (0.000700000000000

Switching to a different tab or clicki
default view of parameters.

ng an action in the list restores the

Using Custom Toolsto Enhance the Environment

Adding custom tools to the development environment lets you launch
programs external to HP TestExec SL or automate repetitive tasks. For

example, you could write a batch fil

ethat copies atestplan and its related

42

Note

Concepts
Working in the HP TestExec SL Environment

files from a development location to a production location, and then create a
custom tool to run that batch file without leaving HP TestExec SL.

As shown below, you can add an optional Tools menu and submenus that let
you call executable files or functionsin DLLs, plus add separator bars to
organize items in menus.

Window Help
Aun WordPad
Run Custom Tool in DLL

File Copying Utilities 3 Copy Testplan Files to Production

Copy Testplan Files to Archive

A program launched by a custom tool continues running even if you exit
HP TestExec SL.

For more information, see “Adding Custom Tools to HP TestExec SL” in
Chapter 6 of th&Jsing HP TestExec 9. book.

43

Concepts
About Testplans, Test Groups, Tests & Actions

About Testplans, Test Groups, Tests & Actions

The hierarchy of the components or building blocks used in the Test
Executive environment is shown below.

A Testplan contains . .. |

Sequences that contain . .. J

: (optional) One or more Test Groups that contain . . . :

: One or more Tests that contain . .. |

One or more Actions that call . . . |

Language-specific routines that do tasks

44

Concepts
About Testplans, Test Groups, Tests & Actions

These components are:

Testplan A named entity that contains multiples sequences, or
“streams of execution,” used to test a specific device, or
UUT (unit under test).

Sequence A named series of test groups, tests, and flow control
statements executed in a predefined order.

Test group An optional, named set of tests executed in a predefined
order. Test groups can be nested inside test groups.

Test A named sequence of actions executed as a group.

Action A named call to one or more external routines written in a
standard programming language.?

Language- A routine that does something useful, such as making a
specific measurement.
routines

a. The exception to this is a “switching action,” which is built into
HP TestExec SL and does not call an external routine.

Although they are not shown above, testplans, sequences, and tests also have

named “symbol tables” associated with them. A symbol table is a collection
of data items, such as variables, called “symbols” whose usage has a specific
scope, such as restricted to a single test or global to an entire sequence of
tests. Symbol tables are mentioned where appropriate in this chapter, and
further described in Chapter 5 of teing HP TestExec L. book.

45

Concepts
A Closer Look at Testplans

A Closer Look at Testplans

What isa Testplan?

As shown below in the |eft pane of the Testplan Editor, which contains a
seguence of tasks, atestplan is a named sequence of tests executed to test a
specific unit under test, or UUT. As atestplan contains tests, tests contain
actions that call routines that do tasks. This layering of componentsis used
extensively in HP TestExec SL.

P Testplan Editor

Testplan Sequence: IMain ;I
Fy

test MewT ezt
best MewT est2
test MewTest3
test MewT estd

A testplan contains multiple streams of execution, or “sequences.” In the
example above, the sequence named “Main” contains five tests.

What'sInsidea Testplan?

Test Groups

What isa Test Group?

At its simplest, a test group is an optional, named pair of statements in a
testplan. A “testgroup” statement starts the definition of a test group, and an
“end testgroup” statement ends the definition. Between these statements you
can place test statements, other test group statements, and statements that
control the flow of testing, such as “for...next” statements.

46

Concepts
A Closer Look at Testplans

An example of the definition for atest group looks like this:

F Testplan Editor
T Scerc [T =]

testgroup Time Domain
tezt Check Period
tezt Check Rizetime
test Check “Yoltage Peak to Peak
test Check Frequency
tezt Check Overshoot
end testgroup

Although the body of this sample test group has only testsinit, it also could
contain additional test groups.

Like tests, test groups can have actions associated with them. What makes a
test group unique, though, isthat the scope of its actions bounds any tests
inside the test group. This lets each test group have an associated list of
actions that do tasks before and after the tests inside the group.

Actionsin atest group can do common setup tasks needed by all testsin the
test group, such as program power supplies to values needed during testing.
Also, they can do common cleanup tasks needed after testing ends, such as

reset the output of the power supplies to zero.

An example of thisis shown below. Here, actions associated with
Testgroup_1 do the setup and cleanup tasks for three tests, Test_3 through
Test_5. Thus, those tests do not need to duplicate these setup and cleanup

47

Concepts
A Closer Look at Testplans

tasks. Test groups are a good way to organize a group of tests whose setup
and cleanup requirements are alike.

Testplan

Test_1
Test_2
Testgroup_1 |
Setup tasks

As shown below, you use the right pane of the Testplan Editor window to
view or modify the action(s) used to set up or clean up the testsinside test
groups.

Test Group Mame: ITestgroup_‘I

Summary: I

Test Group Parameters | Actions I Dcu:umentatinnl

Actiohs for Test Group 'Testgroup_ 1" - |
|hitialize Module Dot
Diigitize Signal elete |

Switching — - |

The details of using actions to do setup and cleanup tasksis described in
greater detail in “A Closer Look at Actions.”

Why are Test Groups Useful?
Test groups are useful because they let you:

« Organize testplans to do slow actions only once, rather than repeat them
in each test.

48

Concepts
A Closer Look at Testplans

» Easily and explicitly manage the state of the test system to avoid
unnecessary operations.

< Apply a common setup of setup and cleanup tasks to a series of tests.

« Ensure that setup actions are “undone”—i.e., cleaned up—when the test
group is exited.

Testplans frequently use nested test groups, where one test group resides
within the scope of another. The outer group might set up power supplies,
and the inner group set up specific instruments needed by the overall group
of tests. For example, a nested test group might set an arbitrary waveform
generator to produce a particular waveform, then run the tests that require
the waveform.

Sequencing & Flow Control

Within the context of HP TestExec SL, a “sequence” is a hamed sequence of
test groups and/or tests executed in a predefined order. In other words, a
sequence is a path of execution through a testplan.

Under normal circumstances, the tests in a testplan execute in the Main
sequence that appears as the default sequence in the Testplan Editor’s left
pane. However, there may be times when you need more control over the
sequence of execution. For example, what should the testplan do if an error
occurs during testing? Instead of having the testplan continue, you may want
it to branch to an error handling routine, such as a different test that
identifies or clears the error condition. Or, you may want to skip subsequent,
related tests and branch to an unrelated series of tests.

Even within a given sequence, you may need to control the flow of testing.
For example, you may want to loop a specific number of times. Or, you may
need to evaluate an expression to decide what happens next in a testplan.
And what happens if a test fails? Instead of simply quitting or continuing,
you may want to branch to another test that further evaluates the failure.

The next several topics describe features of HP TestExec SL that support
multiple sequences of execution and flow control within those sequences.

49

Note

Concepts
A Closer Look at Testplans

Flow Control Satements

HP TestExec SL supports avariety of BASIC-like flow control statements,

such as “If... Then... Else” and “For... To... Step.” As shown below, you can
insert flow control mechanisms and descriptive comments directly into
testplans.

P Testplan Editor

Testplan Sequence: IMain ;I

for Counter =1 to 5 step 1
I Mext test will be executed B times
test Testl

rest

Adding flow control statements is as simple as typing values in predefined
“fill in the blanks” forms, an example of which is shown next.

Far Il:cnunter

I'l Ta Step I'I

Flow control statements are described in more detail with related tasks in the
Using HP TestExec SL book.

Using Symbolswith Flow Control Satements

If desired, you can use a flow control statement to examine or modify the
value of a symbol in a symbol table, and then take action based upon the
symbol’s value.

The syntax for accessing a symbol in a symbol table from a flow control
statement is symbol table. symbol>. If you do not specify symbol table>,
its value defaults to SequenceLocals.

As an example of using a symbol with a flow control statement, suppose you
want one or more tests or test groups to execute the first time a testplan runs
but not during subsequent runs. You may be doing this to save time by

50

P Testplan Editor

Concepts
A Closer Look at Testplans

programming instruments to a known state once per testplan run instead of

each time the testplan runs.

As shown below, you can use the val ue of the predefined RunCount symbol,
whose value increments by one each time the testplan runs, in the System

symbol table to determineif atest or test group is executed.

Testplan Sequence: I tain

=l

test Test

bf Suztern RunCount =1 then
| Only execute Test2 the firzt time the testplan is run
test Test?
end if
test Testd

I ISystem.HunEount =1

-

Then

In asimilar fashion, you can interact with other predefined symbols or

symbolsthat you create from scratch.

For more information about predefined symbols, see “Predefined Symbols
in the System Symbol Table” in Chapter 5 of theng HP TestExec SL

book.

Branching on a Passing or Failing Test

Examining the value of the TestStatus symbol in the System symbol table
will tell you whether the most recent test passed (TestStatus = 1) or failed
(TestStatus = 0). As shown below, you can use TestStatus in a flow control
statement to control the testplan’s flow of execution. This example
implements a “branch on pass” feature if the most recent test passed.

Testplan Sequence: I M ain ;I

test Test

bt Syztem. TestStatus = 1 then

I Test] paszed run Test2 & Test3
test Test
test Testd
end if
test Testd

I; ISystem.TestStatus =1

51

Concepts
A Closer Look at Testplans

The next example shows how to do the opposite of what was shown above;
i.e., implement a “branch on fail” feature by branching if the most recent test
failed.

Testplan Sequence: I M ain ;I =

test Test]

test Test?2
test Testd
end if
test Testd

bf Syztern. TestStatus = O then

Lf Test] faled run Test2 & Test3

I ISystem.TestSlatus =1 Then

Another way to branch on a failing test is shown below. The Options tab in
the right pane of the Testplan Editor has an “On Fail Branch To” feature that
lets you branch to a specified label, such as the name of another test or a test
group, if the current test fails.

On Fail Branch Ta:

As shown below, this can be useful for skipping one or more tests if a failure
occurs, and then resuming testing elsewhere in the testplan.

Testplan
Test_1

Test_2 ==failed!==» | On Fail Branch To: Test_4

Test 3
Test_4 <« continue here

Test 5

Branching on an Exception

Exceptions, which are errors or unusual events that you would not normally
expect to happen during testplan execution, can be raised by the underlying

52

Concepts
A Closer Look at Testplans

code on which the Test Executive is built or by user-defined routines inside
actions. When this happens and you do not explicitly handle the exception in
the action in which it occurs, the left pane of the Testplan Editor lets you
branch to an alternate sequence of tests whose sole purposeisto handle
exceptions.

P Testplan Editor

Testplan Sequence: IE:-:CE:I:ItiI:Ir'I LI

test Error_T et
ezt Error_T est?

The example below shows how each testplan actually contains two

sequences of execution, one—Main—that is used when tests execute
normally and another—Exception—that is used only if an exception occurs.
Here, an exception whilBest _2 was executing caused a branch to an
alternate sequence of tests called the “Exception sequence” that is used to
handle errors.

Testplan

Main sequence Exception sequence

Test 1

Test 2 =an exception occurred!;

Test_3 Error_Test_1
Test 4 Error_Test_2
Test 5

Keep the following in mind when using an Exception sequence:

« Only an exception causes branching to the Exception sequence; i.e., you
cannot force branching to the Exception sequence via a failure or other
means.

53

Concepts
A Closer Look at Testplans

« If you do not want an exception to force branching to the Exception
sequence, you must handle the exception in the action in which it occurs.

< All tests share a single Exception sequence; i.e., there is not a separate
Exception sequence for each test in the Main sequence.

« When an exception causes branching to handle an error condition, you
should assume nothing about the state of the test system or the UUT.
Thus, in most cases you should immediately reset everything to a safe
state in the test to which you branch. For example, you should
immediately discharge capacitors on the UUT, reset signal sources and
power supplies, and then reset any remaining instruments.

« The Exception sequence may need to bleed trapped charge from the UUT
by programming power supplies and other sources to zero volts and then
waiting before resetting the test system.

More Complex Branching

If desired, you can create more complex testplans by using combinations of
branching on failures and branching on exceptions. As shown next, a test in
the Exception sequence can branch on a failure the same as a test in the Main
sequence. However, its branching is restricted to other tests in the Exception
sequence; i.e., it cannot branch to a test in the Main sequence of tests.

Testplan

Main sequence Exception sequence

Test_1

Test 2 —an exception
- occurred!
Test_3 Error_Test 1 =— failed! —}l On Fail Branch To: Error_Test_2

Test_4 Error_Test_2 «— continue here —I

Test 5 Error_Test_3

If desired, you can use the “On Fail Branch To” feature—i.e., branching on a
failure—to force branching by creating a test that returns a result, setting the

54

Concepts
A Closer Look at Testplans

test’s pass/fail limits so that it always fails, and not setting the test’s Save
Pass/Fail option in the right pane of the Testplan Editor (shown below).

-

Test Name: ITest2 ™

Surmary: ||
Test F'arametersl Actinnsl Limitz | Options | Diocumentation
[T lgrore this test

[T Generate unique names for datalogging when looping

¥ Pass/Fail only affects 'On Fail Branch To'

Testplan Variants

Testplans support the use of one or more named variations called “variants”
that can define the behavior of the tests and test groups inside them. Because
they let you usene testplan witm different sets of test limits and

parameters, variants are useful where one UUT is very similar to another
except for slightly different values for its test limits or parameters.

If a testplan has variar]tsyou can do the following for each of its tests and
test groups:

« Choose a variant under whose name you wish to define a distinct version
of the test or test group.

» Define a set of parameters and limits for a version of a test associated
with a variant.

< Execute or ignore each test by variant.

1. All testplans have a default variant named “Normal”.

55

Concepts
A Closer Look at Testplans

Only tests that you specifically identify to be ignored for avariant, as
shown below, are not executed.

Test F"arametersl .-'lu:tiu:unsl Limitz | Options Du:u:umentatiu:unl

F Testplan Editor

Testplan Sequence: IMain j

test Testl
I The test below will be ignored

Note The most important thing to know about variants is that they can provide a
single testplan with multiple personalities.

When the testplan is run, you specify which variant to use. Thisis similar to
having different versions of atestplan available, except that what appearsto
be different versionsis actually multiple views of the same testplan
dependent upon which version of the testsin it are executed or ignored based
on variants.

The following example shows the use of two variants, QA (Quality
Assurance) and Production, in atestplan. Check boxes to the right of each

56

Concepts
A Closer Look at Testplans

test indicate which tests are ignored for the variants. Notice that every testis
executed for the QA variant but that tests 4 and 5 are ignored for the
Production variant.

Running with Running with
"QA" variant "Production” variant
Testplan Testplan

Test_1 [Production Test_1 [Production
Oaa Oaa

stressful parameters Test 2 [Production normal parameters Test 2 [Production
tight limits - oA normal limits ~ Oaa

Test_3 [Production Test_3 [Production
Claa Oaa

Test 4 Xl Production
Oaa Tests marked to _

be ignored for
Production variant ——

Test 5 X production are not executed

oA

When the testplan is run with the QA variant, all the tests are executed and
the stringent set of parameters and limits associated with the QA variant is
passed to them. But when the testplan is run with the Production variant, two
fewer tests are executed and the normal parameters and limits appropriate
for production testing (associated with the Production variant) are passed to
the tests.

Various features in the Test Executive let you define variants for tests, and
then specify which variant to use when executing a series of testsina
testplan, respectively.

Test Yanants

Current YWariants: akK

Mormal

E

57

Concepts
A Closer Look at Testplans

Also, you can associate the switching or setup/cleanup actionsin test groups
with variants used in the testplan. Unlike tests, however, you cannot execute
or ignore test groups based on variants.

Global Variablesin Testplans

If desired, you can define global variables—i.e., variables whose scope is the
testplan—in a testplan. Global variables let you share data among the actions
in all the tests in a testplan. As shown below, one place global variables can

be stored is in the SequenceLocals symbol thate] they are accessible as
parameters for any action in any test included in the Main sequence.

Sequencelocals symbol table

Testplan {global_vag

Main sequence N
global_var_n

Test #1
Action #1

A.c.tion #n }

<

Test #2
Action #1

Action #n

Test #3
Action #1
Action #n

The example below shows the result from Test #1 being passed to Test #3
via a global variable nameagliobal var 1. In this simple example, the result
from Test #1 might be a value needed in Test #3. When Test #1 finishes, the

1. Note the distinction between this and the TestSepL ocals symbol table used
to pass results between actionsinside a single test.

58

Concepts
A Closer Look at Testplans

result is passed by reference to global_var_1. When Test #3 executes, it is
passed the value of the global variable as one of its parameters.

b
Sequencelocals symbol table

global_var_1

Testplan
Main sequence

Test #1 == result

Test #2

P Test #3

In asimilar fashion, the value returned by Test #1 is visible to the entire
testplan. Thus, Test #1 could return a value—a baud rate, perhaps—used in
any or all subsequent tests.

Besides the SequencelLocals symbol table used to store global variables for
the Main sequence, there is another symbol table named SequencelLocals
that stores global variables whose scope is tests included in the Exception
sequence. Although both tables have the same name, each instance of it is
uniquely accessible only in the sequence in which it appears.

If you need a symbol table whose scope is the entire testplan—i.e., all the
tests and actions in both the Main sequence and the Exception sequence—
you can either use the TestPlanGlobals symbol table or create an external
symbol table whose symbols are stored in an external file associated with the

testplant

External symbol tables can be useful when you wish to support multiple

versions of a testplan. For example, each symbol table can hold the data
(symbols and their default values) used to define a specific version of the
testplan. Also, you can hame an external symbol table whatever you like.

1. There also isasymbol table named System whose scope is the entire
testplan. It contains predefined symbols associated with the testing
environment.

59

Concepts
A Closer Look at Testplans

Note Be aware that the Sequencel.ocals symbol table contains no predefined
variables. You must use the Symbol Tables box, which is shown below, to
add a new variable to the symbol table.

Symbol Tables [x|

Tables: [TestSteplocals Select a symbol table from the list to edit or view it You may
also add or remove links to external spmbol tables. [Uze

ar
File=:Mew or File=rOpen to create and edit external symbol Cancel
tahlez). =

Link to External Syrbol T able... ‘

Syrmbols
Name |‘Jalue |Type |Attrihutes |Descriptinn
global wvar 1 0 Int32

60

Note

Concepts
A Closer Look at Tests

A Closer Look at Tests

What isa Test?

A test isanamed procedure that does some form of testing activity on a unit
under test, or UUT. To be meaningful, most tests have a limits checking
feature that determines if the UUT passed or failed the test. Also, most tests
use a datalogging feature to store information collected during the test, such
as information about failing tests for subsequent analysis.

What’sInsidea Test?

A test consists of one or more actions and their associated data executed in a
predefined sequence. An action calls an action routine, which is custom code

you write that does something useful, such as making a measurement. An

action called an “execute action” forms the basis for a test, as shown below.

Test
Can make

a
measurement

Execute Action

Although actions and the routines they call are separate components, it is
usually simplest to refer to them collectively as “an action.” Thus, we might
say “an execute action makes a measurement” and actually mean “an
execute action calls an action routine that makes a measurement.”

An execute action may be all that is needed for a test. But there are times
when it is useful to have other tasks precede or follow an execute action. For
example, you may need to set up the conditions for a test—i.e., close relays
that make necessary connections, set power supplies to known values, set a
DMM to a specific range, etc.—before using an execute action to make the
measurement.

To address this need, you can include a “setup/cleanup action” that precedes
the execute action in your test. A setup/cleanup action can have a setup

61

Concepts
A Closer Look at Tests

component that executes an action routine before the execute action begins,
and a cleanup component that executes another action routine after the
execute action ends.

Test
- Setup/Cleanup Action

L - — — setuptask- — — —
1
1 Execute Action

!
— — — —cleanup task = = =

If desired, you can use more than one of each kind of action in atest. For

example, you might have several setup/cleanup actions whose setup

components establish the initial conditionsfor the test. After that, an execute

action might make a preliminary measurement—to return an offset voltage,
perhaps—followed by a second execute action that makes the measurement
used to decide if the test passes or fails. Finally, the cleanup components of
the setup/cleanup actions might restore the hardware to a known state.

A third type of action, called a “switching action,” lets you close
connections, such as switching paths made with relays, at the beginning of a
test and controls the status of those connections when the test ends.

Actions are described in greater detail under “A Closer Look at Actions.”

Limits Checking

To be meaningful, most tests have a limits checking feature that determines
if the UUT passed or failed the test. Limits define the acceptable boundaries
for a test. If the results from a test are outside its specified limits, the test
fails. If desired, a test can have more than one set of limits, where each set is
associated with a named variant of a testplan, such as “Hot” or “Cold.”

Whenever you use the Testplan Editor’s right pane to define a test that
includes an action that returns a result, you have the option of specifying

limits for the test Conceptually, you can consider limits checking as a
feature that is built into the framework of each test.

62

Concepts
A Closer Look at Tests

As shown below, HP TestExec SL includes several kinds of limits checkers.

Limnit Checker:

Mominal Tolerance j

~ Description For ' E’“ﬂf’MaH

Select a limit ch

gquivalence
Morminal T aler

Parameters For "Limit"

Mame Walue
Haminal 25
+/- Tolerance 2

The limits checkers you can use are;

Min/Max

Equivalence

Nominal Tolerance

<No Limits>

The test passes if its result is within specified
minimum/maximum values. To pass, the result
must be greater than or equal to the minimum and
less than or equal to the maximum.

The test passes if its result exactly matches a
specified value.

The test passes if its result is within a specified +/-
tolerance of a specified nhominal value. To pass, the
result must be greater than or equal to the lower
tolerance value and less than or equal to the upper
tolerance value.

Note: The nominal tolerance is a simple number
and not a percentage. In other words, a nominal
tolerance of 5 means the result must be within plus
or minus 5 of the nominal value, not within plus or
minus 5 percent of it.

The test is not checked against pass/fail limits.

1. If you do not specify limits, they assume a default value assigned when the
action was created. The default may or may not be what you need.

63

Concepts
A Closer Look at Tests

If desired, you can also use the Test Limits Editor box shown below for a
global perspective that lets you examine or modify test limits across an
entire testplan.

+ Test Limits Editor

Marmal Marmal
Test Mame Test Result Limit MName: Lirmit % alue:
Check Period result 0.000&000000000C
I awinnum 0.0007000000000C
Check Rizetime result b inimnuim 0.000000000000
b aminnum 0.0001500000000C
k Woltage Peak to result tinirmum 1.85000000000
I awinum 2.15000000000
Check Freguency result inirnunm 1430.00000000
b ainnum 1510.00000000
Check Overshoot result b inimnuim 0.000000000000
b ainum 0.200000000000

Thelist of actions that appearsin the right pane of the Testplan Editor
window shows an asterisk preceding the action whose result is used for
limits checking. As shown below, if atest contains various kinds of actions,
the action whose name has an asterisk beside it need not necessarily be the
last action in the list.

Test Parameters | Achions I Lirnits |

Actions for Test 'Check Period'

io_close_mod

64

Concepts
A Closer Look at Tests

If atest contains more than one execute action, you can specify which action
is used for limits checking. The next example shows changing the action
used for limits checking from Risetime to Frequency.

Test Parameters | Actions |Limits | Dptiu:unsl Du:u:umentatiu:unl

Actiong for Test 'Check Rizetime'

*Rizetime Cut Cirl+X
Copy Ctrl+C
Paste Crl+¥
Delete Cul+D
Limit check this measurement |.

Parameter Passing

Tests contain actions that do something useful, such as make ameasurement.

In asense, each test is generic until parameters are passed to it and to its

actions to create a specific instance of the test. For example, a generic test

that programs a power supply to produce an output, programs a voltmeter to
arange, and makes a voltage measurement must be passed specific values

for the power supply and voltmeter, and pass/fail limits for the measurement.
Thus, a test is a “base” specification whose “overrides” determine its final
characteristics.

Besides passing data in parameters to a test, you can also pass a value that
determines if or how the test is executed. For example, suppose two tests
were named Testl and Test2. Depending upon the results from Testl, you
could pass a value from it to a global variable in a symbol table accessible to
both tests. The value of the global variable could then be passed into Test2
and evaluated to determine whether Test2 executes.

65

Concepts
A Closer Look at Tests

Shown below ishow the Test Parameterstab in the right pane of the Testplan
Editor lets you specify parameters for tests.

Test Parameters |.-’-'-.|:ti|:uns| Limitz I Dptinnsl Du:u:umentatiu:unl

FParameters for Test 'Check Frequency'

I ame Walue |:| Inzert ... |

TestParm1 5

........

Also, each action in atest hasalist of parameters, and each parameter in that
list has a default value defined when the action was created. As shown
below, you use features at the top and bottom of the right pane in the
Testplan Editor to specify the values for parameters in actions that the Test
Executive uses to create a specific instance of the test when it executes the
test.

Test Parameters | Actions I Limnitz II Dptionsl Ducumentatianl

Actions for Test Check Frequency' Insert . |
Delete |

r Parameters for "Frequency”'
Walue | Description I;I
module hanhdle @TestPlanGlobalr. Sco | Containg the session ide
result 0000000000000 The result of the measu
channel @TestPlanGlobal:. Sco | Containg the channel n ;I

Notice that the values of two of the parameters shown above—"module
handle” and “channel’—begin with @. This indicates that instead of passing
values directly, the parameters reference symbols in symbol tables.

66

Concepts
A Closer Look at Tests

In a similar fashion, the Limits tab in the Testplan Editor’s right pane lets
you specify pass/fail limits that help define a unique instance of a test. An
example is shown below.

Test F'arametersl &ctions | Limits | Dptiu:unsl Du:u:umentatiu:unl

Limit Checker: Im ;I

Lirnit W alues
Yalue | ;l
Miriirriuirn 1490.00000000
[ERT TR 1510.00000000
Note The values of parameters that return numeric results used for limits checking

are converted to and displayed as reals.

As shown below, parameters and pass/fail limits (which are a part of the test
framework) passed into a test define a unique, specific test that does a
specific task. Parameters are passed in a named group called a “parameter

67

Concepts
A Closer Look at Tests

block,” which is explained in greater detail in tHsing HP TestExec SL
book.

Volts = 5.0, Range = 2, Expected Volts = 5.0, Min = 4.0, Max = 6.0

Test l

Setup/Cleanup Action
(set up power supply)

. pass/fail limits
Setu plCIean up Action (part of test framework)

(set up voltmeter)

TestStepParms
Execute Action (symbol table)

(make a measurement TestStepLocals
(symbol table)

. = part of parameter block

Each test also contains a symbol table named TestStepParms used to hold
values passed as parameters to the test (as opposed to parameters passed to
actions in the test). Also, a symbol table named TestStepLocals stores
symbols whose scope is the test.

Although this example is simplistic in the sense that actual tests probably
will be passed many parameters instead of only a few, the concept is the
same in either case.

68

Concepts
A Closer Look at Actions

Note

A Closer Look at Actions

What isan Action?

An “action” is the smallest component of a test. It is a routine that does
something useful, such as making a measurement or controlling the
switching operations needed for a particular test.

There are three types of actions:

execute Does a task, such as make a measurement

setup/cleanup Has optional setup and cleanup components that can do
tasks before and after an execute action or by
themselves

switching Controls switching hardware

Switching actions are described under “How Actions Control Switching.”

In many cases, actions are reusable. For convenience, actions are stored in
libraries whose contents you can quickly search. If the action you need
already exists, you can copy it and use it as-is in your test. Or, you can
modify existing actions or create new ones from scratch if none of the
existing actions suits your needs.

For more information about libraries, see “About Test & Action Libraries.”

What'sInside an Action?

Think of an action as a predefined framework to which you must add a
custom action routine—i.e., code that you write—specific to your needs.
The action routine is written in a language such as C and then associated
with an entry point in the action. When the action is called by a test, it
executes the routine associated with it. For example, the execute action

69

Concepts
A Closer Look at Actions

shown below calls an action routine named Measur eDCV that triggers a
digital multimeter to make a DC voltage measurement.

entry point Test
where
custom Execute Action
code
is added —}MeasureDCV

For simplicity, this example and others that follow show pseudo-code
notation for the action routine or its purpose. The actual code you add
depends upon the means by which you control instruments, such as directly
from C/C++ or through an instrument control language such as HP VEE.

Continuing with the example above, suppose you also needed to program a
power supply to aninitial value before making the measurement, and return
the power supply to zero afterward. The sequence of events might be:

1. Program power supply #1to 5 VDC.

2. Make the DC voltage measurement.

3. Program power supply #1to 0 VDC.

The actions and custom routines to do this sequence of tasks is shown below,
with circles to indicate the order of execution.

Test

@ Setup Component of Setup/Cleanup Action
Set_Power_Supply #1_to_5 VDC

@ Execute Action
MeasureDCV

® Cleanup Component of Setup/Cleanup Action
Set_Power_Supply #1_to_0_VDC

The example now includes one setup/cleanup action. The setup/cleanup
action’s setup component calls an action routine that does a task before the
execute action (programming the power supply to 5 VDC), and its cleanup

70

Note

Concepts
A Closer Look at Actions

component calls an action routine that does a task afterward (programming
the power supply to zero).

Although either of the componentsin a setup/cleanup action is optional or
will work by itself, in most cases you will use them as complementary pairs;
i.e., whatever you have the setup component do, the cleanup component will
undo.

Paired Sructurein Actions

Insofar as the order of execution is concerned, the example above implies
that the setup component of a setup/cleanup action is located somewhere
before the execute action, and the cleanup component is located somewhere
after the execute action. In reality, though, the actions in the test look like
this:

Test

Setup/Cleanup Action

Execute Action

How is this possible? As shown below, the order of execution of the setup
and cleanup components in a setup/cleanup action is determined by their
relationship with the execute action. When a setup/cleanup action precedes
an execute action, HP TestExec SL ensures that the setup component
executes before the execute action and the cleanup component executes after
the execute action.

71

Note

Concepts
A Closer Look at Actions

When more than one setup/cleanup action is used in atest, the nesting of the
setup and cleanup components is determined by the order in which the
actions occur. Refer to the example below.

Measurement code !

@
@
(3 Execute Action ! E
@ |

The numbered circles in the example above show how inner loops finish
before outer loops, which means the order in which setup and cleanup
components in setup/cleanup actions are executed is similar to the operation
of loop control structures used in many programming languages.

Actions execute in the order specified, so you must be sure to specify them
correctly. For example, if the execute action appeared first in the test above,
it would execute before either of the setup/cleanup actions.

As mentioned earlier, the order of execution of setup and cleanup
components is determined by the relationship between the setup/cleanup
action in which they appear and execute actions. Thus, the actionsin the
previous examplereally look like this:

Test
Setup/Cleanup Action #1

Setup/Cleanup Action #2

Execute Action

72

Concepts
A Closer Look at Actions

Fortunately, you do not need to remember all the details of the actions and
their componentsinside each test. The Test Executive environment provides
a Test Execution Details window, which is shown below, that you can use to
view the details of tests, including the sequence in which the componentsin
its actions execute.

Test Execution Details m
-
SETUP OR EXECUTE:
Action Routine
Qpen Inztrument 10_0Open_Module
Initialize Module Initialize_Module
Digitize Signal Digitize_Waveform
Switching Switching
CLEANUP:
Action Routine
Switching Switching
Qpen Instrument 10_Cloze_Module

Also, when you use the Action Definition Editor to create actions, it helps
you specify their contents correctly. For example, an execute action cannot
have setup or cleanup components, and the editor prevents you from making
inappropriate choices. As shown below, the fields for specifying the names
of Setup and Cleanup components are disabled when the type of action is
Execute.

r Floutines

0 Setup/Cleanup &
Setup: I

Execute: I

Cleanup: I

Which Kind of Action Do You Need?

Given that you have execute actions and setup/cleanup actions to choose
between, how do you decide which to use in agiven situation? For example,
should you use several simple actions, such as a series of execute actions
that each do only one task, or something more complex, such as an execute
action preceded by more complex setup/cleanup actions?

73

Concepts
A Closer Look at Actions

Keep the following in mind when deciding which kind of actionto usein a
test:

< If an action does a single, specific task, such as make a measurement, use
an execute action.

< If an action has obvious or natural setup and cleanup components, use a
setup/cleanup action. For example, you should always use a
setup/cleanup action with sources such as power supplies, DACs, etc.

Complementary setup/cleanup pairs are the best way to ensure that
essential actions occur in a specific order. For example, if you program a
power supply to some voltage in a test, you probably need to program it
to zero when the test has finished. A setup/cleanup action does this well
and, because both components are combined in a single action, it ensures
they remain together if you move the action in your testplan.

« If an action must handle an exception condition, use an execute action.

Suppose you are aware that the UUT has a failure mode that could keep it
from responding correctly. Because this represents an exception instead
of a catastrophic failure, you want the test to recover gracefully by
handling the exception, Here, you should use an execute action that
compensates for or clears the failure condition.

Having a strategy for using actions in tests is especially important if you
create your own actions because you cannot create appropriate actions
unless you can anticipate how they will be used. The simpler an action is, the
more likely it is to be reusable. Thus, actions that do a single task are more
likely candidates for reuse than more complex actions that do several tasks.
For example, an action that does nothing more than program an instrument
to a specific range may be reusable in several tests, with only its parameters
changed from instance to instance. The trade-off when using simple actions
is that you may need several of them to do what one more comprehensive
action could do, which increases the complexity of your test.

74

Concepts
A Closer Look at Actions

Passing Results Between Actions Inside Tests

If desired, you can pass the results from one action to another within atest.
For example, the result from one action might be passed as a parameter that
determines what another action does. Variables defined in the symbol table

called TestStepLocalst, whose scope is the test, are used to pass values
between actions inside a test.

The example below shows the result from Action #1 being passed to Action
#3 viaavariable named var 1. In this simple example, the result from Action
#1 might be an op-amp offset needed as a correction factor in Action #3.
When Action #1 finishes, the result is passed by reference to var 1. When
Action #3 executes, it is passed the value of the variable as one of its
parameters.

b
TestStepLocals symbol table

var1 4

Test_1

Action #1 == result

Action #2

P Action #3

1. Note the distinction between this and the Sequencel ocals symbol table,
TestPlanGlobals symbol table, and external symbols tables used to pass
results at the testplan level.

75

Concepts
A Closer Look at Actions

Note

Be aware that the TestSteplLocals symbol table contains no predefined
variables. You must use the Symbol Tables box, which is shown below, to
add a new variable to the symbol table.

Symbol Tables [x|

JERI TestS teplocals Select a symbal table from the list to edit or view it Yoo may
TestStepParms alzn add or remove links to external symbaol tables. (Use

Link to External Symbol Table. . |

Bemove Link b Svrnbol Tablbe |

ak.
Sequencelocals File=>Mew ar File=»0pen ta create and edit extemal symbal Cancel |
Syztem tables). —

Symbalz
|7Name |Va|ue |Type |Atlrihutes |Descriplinn

How Actions Control Switching

Many tests require that the test system’s hardware be in some known state
before the measurement begins. For example, suppose you were testing a
UUT whose output depended on a specific waveform at itsinput. Prior to
making the measurement in this test, you probably would need to set up a
power supply, asignal source such as asignal generator, and a detector such
as afrequency counter. You probably would use one or more setup/cleanup
actionsin thetest to set up these conditions, followed by an execute action to
make the measurement.

Besides setting up the hardware, you also need to establish whatever

connections are needed between the hardware and the UUT before the
measurement begins. These connections are called a “switching path.” For
example, the power supply needs to be connected to the UUT's power and
ground pins, the signal generator needs to be connected to the UUT's input,
and the frequency counter needs to be connected to the UUT's output.

Unless the scope of your testing needs is very limited and can be
“hard-wired” permanently, you probably will make these connections via
some form of switching module that contains a relay matrix. Thus, your test
requires some means of controlling the relay matrix to set up the desired
switching path.

76

Concepts
A Closer Look at Actions

If you are using hardware handler software to communicate with your

switching hardware (see “About Hardware Handlers”), the Test Executive
provides a convenient “switching action” to control switching setup and
cleanup. A switching action is a special kind of built-in setup/cleanup action
that closes connections, such as switching paths made with relays, at the
beginning of a test and controls the status of those connections when the test
ends.

Note Unlike other kinds of actions, you do not use the Action Definition Editor to
create switching actions. Instead, switching actions are predefined and you
insert them as you create tests.

The following happens when a switching action closes one or more
switching paths during a test:

1. All of the connections defined for the switching path are closed.
2. The Test Executive walits for the closures before continuing.
3. The action or actions following the switching action are executed.

4. Depending upon which option you specified for the switching action, at
the end of the test the connections can remain in their current state, open,
or be restored to their previous state.

Caution HP TestExec SL has no way of knowing if you are “hot switching™—i.e.,
switching with power applied—during a test. Thus, it is your responsibility
to see that switching actions are done at appropriate times.

Two more ways to control switching from actions are:

< If you areusing hardware handler software, you can write actions that
make calls to a special Hardware Handler API that controls switching
paths.

This method lets you explicitly modify switching paths during a test,
which makes it quite versatile. Because it requires you to write code,
however, it is more difficult to use than the Switching Path Editor.

77

Concepts
A Closer Look at Actions

For more information about the Hardware Handler API, see Chapter 3in
the Reference book.

If you are_notusing hardware handler software, you can write actions
containing code that communicates directly with your switching
devices—i.e., does not use features in the Test Executive—via whichever
I/O strategy you have chosen.

This method potentially is the most versatile because it lets you do
anything allowed by your I/O strategy. However, it also can be the most
complex and problematic because it does not let features of the Test
Executive assist with the task. For example, your code may have to track
the states of relays, ensure that “break before make” rules are enforced,
and such.

78

Note

Concepts
About Exceptions

About Exceptions

What isan Exception?

Insofar as HP TestExec SL's testing environment is concerned, exceptions
are errors or unusual events that you would not normally expect to happen
during testplan execution. Exceptions can be raised by the underlying code
on which the Test Executive is built, or by user-defined routines inside
actions.

Although they are similar in concept, exceptions in HP TestExec SL are
distinct from exceptions in a programming language or in an operating
system.

How Does HP TestExec SL Handle Exceptions?

HP TestExec SL handles exceptions like this:

» The Test Executive environment provides a specific “Exception
sequence,” which is a branch of the testplan that automatically executes
when the system detects an exception.

The Exception sequence should put the test system and UUT in a safe
state. For example, the Exception sequence should discharge capacitors
on the UUT, reset signal sources, reset power supplies, and reset any
remaining instruments. Since the Exception sequence should perform
only a safe, no-assumptions shutdown of the system, it may be slower
than other operations. You can edit an Exception sequence just as you
would any other sequence of tests.

For an example of using the exception sequence, see “Branching on an
Exception.”

« |f there are no tests in the Exception sequence, the system raises an
exception to be caught by the user interface, signaling that the system
could not be shut down properly.

79

Concepts
About Exceptions

» Test groups do not execute after an exception occurs. When an exception
occurs, the test may have only partially completed, leaving the hardware
in an unknown state. Therefore, a test group’s normal clean-up actions
may be invalid. Again, use the Exception sequence to do all clean-up for
exception conditions.

« HP TestExec SL treats exceptions that reach the test environment as
“abort” conditions and stops executing the test and testplan immediately.
The Exception sequence then executes automatically.

« The user interface controls whether testing continues after an exception
has occurred. The interface can determine if an exception occurred
during test execution. The user interface can also query if any exceptions
occurred during the Exception sequence to decide if a safe shutdown has
occurred. The user interface decides whether to allow restarting the
testplan on the same or a new UUT. The user interface can also decide
whether to continue looping on a testplan.

e The user interface treats exceptions differently for developer, operator,
and automation interfaces. For exceptions in the developer interface, the
user interface displays a dialog box and stops, even if a successful
shutdown has occurred. If you write your own operator or automation
interface, you may want to continue at the next testplan or module after
an error. This lessens the chances of an exception shutting down a
production line.

Where Should | Handle Exceptions?

Whenever possible, you should handle exceptions within actions so they
never cause branching to the Exception sequence. For example, you may
know that a non-fatal error—such as a time-out for an instrument—might
occur and want to handle that exception in the action. You can then construct
the action routine so it will catch, check, and clear the exception and then
continue to fail or retry the test as needed. Other exceptions include such
conditions as an action's parameters not matching the parameters defined in
the Action Definition Editor, memory allocation errors, and so on.

If you need to completely stop execution from within an action, you can
create a dialog box requiring a response from the user. This forces human
intervention before testing can continue.

80

Concepts
About Exceptions

Exception handling in actions is described with language-specific topics
about creating actionsin the Using HP TestExec SL book. Also, see
Chapter 4 in the Reference book for a description of the functionsin the
Exception Handling API, which lets you raise and handle user-defined
exceptions plus examine and handle exceptions raised in the testing
environment.

81

Concepts
About Switching Topology

About Switching Topology

What is Switching?

Most tests require that the test system’s hardware be in some known state

before the measurement begins. Besides setting up the hardware, such as
programming power supplies and instrumentsto known values or states, you

need to establish connections between the hardware and the UUT before

making the measurement. Many of these connections are not permanently

“hard wired” but are controlled programmatically via some form of
“switching.” Switching, multiplexing, and signal routing exist because it is
not cost effective to have every instrument or other resource behind every

pin.

What is Topology?

The Test Executive cannot control switching unless it knows which
programmable signal paths exist for your specific test system hardware. We
refer to this information collectively as the switching topology, or simply
“topology,” available for testing a given UUT. Topology information

includes definitions of the modules, wires, switches, and buses of the test
system that are interconnected by switching.

How Switching & Topology I nteract

Assuming that you have hardware handler software (described in “About
Hardware Handlers”) for each programmable module that does your
switching, a software tool called the Switching Topology Editor lets you
define or describe your hardware so the system software is aware of its

characteristics. This process maps a logical view of your system's hardware
onto its physical reality. For example, you can associate a physical point,
such as a pin on the UUT, with a logical node name that is easy to use and

1. You cannot use the Test Executive’s graphical features, such as the
Switching Path Editor, to control switching unless you use hardware handler
software.

82

Concepts
About Switching Topology

remember, such as UUT_Si gnal _i n. From then on, you can refer to the
node name, or an alias for it, and the Test Executive knows which physical
point you mean. Thislevel of abstraction lets you focus on developing tests
instead of trying to remember details of the hardware.

Once you have entered this topology information and saved it, you can use
the Switching Path Editor to specify switching actions that tell the Test
Executive how to control programmable paths during testing. A switching
action sets up connections, such as those made via arelay matrix module,
needed when atest begins. It also controls the state of those connections
when the test ends.

A Closer Look at Switching Topology

Switching Paths

As shown below, electrical end-to-end connectionsin atest system are made
via a “switching path” that consists of one or more individual connections
made by “switching elements” that interconnect “nodes.”

Source_hi «— "node"

"switching path”" ——— | 2

M
T

M1
[

@ \ ABus1

"switching element”

v

CPU_in

Here, the switching path connects three nodes whose names are
Source_hi, ABusl, andCPU_ i n. Sour ce_hi might be some form of
stimulus, andCPU_i n might be a pin on the UUT. They are connected by
closing two switching elements, denoted 1 and 2, located on a bus named
ABus 1. The switching elements themselves might be relays on a switching
card.

83

Concepts
About Switching Topology

If we wanted to describe the switching path above in asingle, readable
statement it might look like this:

[Source hi ABusl CPU _in]

Thismeansthat Sour ce_hi connectsto ABus1, which connectsto CPU i n.
Note that Sour ce_hi , ABus1, and CPU_i n are logical names—i.e.,
labels—that are convenient to use but do not actually describe where the
physical node is located. Because there is a single switching element
connecting them, we say thadur ce_hi andABus1 are “adjacent.” In a
similar fashionABus1 andCPU_i n also are adjacent.

Having seen the above, we now know that:

« Anode is any electrically common, uninterruptable point in the topology.

+« Each node has a name, or label.

« Two nodes are adjacent if there is only one switching element connecting
them.

« A switching path is an ordered set of adjacent node names.

Why not simply call a switching element a relay? Calling it a relay is an
oversimplification because other kinds of switching elements exist. For
example, multiplexers and rotary switches also are switching elements,
except they have multiple positions while a relay has only two: open and
closed.

Switching becomes more complicated when all the elements that form a
switching path are not located on the same card or module. Then, the
switching path has to include a specifier to identify which switching element
on which card is being used to make the connection.

1. Thisisthe notation that appearsin the Switching Path Editor when you use it
to define switching paths.

2. Nodes a'so can have multiple names, or aliases, for conveniencein
referencing them.

84

Concepts
About Switching Topology

The Three-Layer Model for Switching Topology

HP TestExec SL uses athree-layer model to define atest system’s switching
topology. As shown below, the first layer defines the system hardware, the
second defines one or more removabl e fixtures used with the system
hardware, and the third defines one or more UUTs used with a given fixture.

system

Test System A layer

. . . fixture

Fixture A Fixture B Fixture n layer

uuTt

UUT A UuTB UUT n layer

Information typically defined at the system layer includes:

« Definitions for any cards or modules used in the system, including
adjacent switching elements.

» A definition of the cabling that connects the cards or modules.
» Definitions of aliases for system resources.

Information typically defined at the fixture layer includes:

» Definitions of wires in the fixture.

« Definitions for the names of any edge connectors.

» Definitions for any electronics inside the fixture that is a part of your
switching strategy.

Information typically defined at the UUT layer includes:

« Definitions of aliases for test points on the UUT.

85

Concepts

About Switching Topology

Each layer in the switching topology lets you define:

aliases

wires

modules

Aliases are convenient, alternate names for node names. For
example, in the system layer you might call a system
resource DVM _hi gh instead of MCM | nst 1. Or, in the
UUT layer you might call a test point on the UUT CPU_i n
instead of Edge_Connect or _Pi n_2. Besides improving
the readability of names, aliases increase the portability of
tests and testplans across test systems. Each node can have
one or more aliases.

Wires include wires, cables, and jumpers. In the system
layer, these wires could describe how you have cabled
together the test system’s cards or modules. Or, in the fixture
layer you could describe interface pins that have been
shorted together.

Modules are “boxes,” cards, or groups of programmable
switches that need to be managed by the switching software.

86

Concepts
About Switching Topology

What do these actually mean? Refer to the next example, which shows how
the conceptual layers might relate to actual hardware.

InstrL_Jment A
Hi Lo Instrument B
Hi Lo
! B 4 4 ABus1
% = I 1-1 ZT dsled sl o System Layer
\ wiring inside the fixture Fixture Layer
E1| E2| E3
———————————————— { edge connector |- -----------------
— L UUT Layer
G’\LDTI vce
L 7P1
CPU
UUT Module

Although it may seem complex at first, having three separate layers of
switching topology increases the likelihood that you can reuse individual
layers. For example, you only have to modify the UUT Layer when using an
existing fixture and test system to test anew UUT. This can be very
convenient if you have afamily of modules to test that can share common
resources and fixturing but whose internal details vary.

87

Concepts
About Hardware Handlers

About Hardware Handlers

Hardware Handlersin General

A hardware “handler” is an additional layer of software between

HP TestExec SL and a device driver. By providing a set of standard—i.e.,
“well-known"—functions through which HP TestExec SL communicates
with device drivers, a handler enhances HP TestExec SL's ability to control
devices.

The best way to understand what a hardware handler does is to understand
what happens if a handler is not used. When using a conventional driver
strategy, the actions in a test talk to instruments, switching modules, or other
devices via a device driver as the test executes. This means that each action
must communicate via a specific control language or set of commands
understood by the device driver. Thus, actions are specific and unique
insofar as an action that controls an instrument via one control language
cannot readily be reused to control other instruments requiring a different
language.

But when a handler is used, actions can communicate with devices via a
standard set of function calls known to HP TestExec SL. The handler
translates these standard calls made by actions into the specific control
language needed to communicate with a driver or instrument. Because the
function calls generally remain the same from device to device—the
exception being specific functions that one device supports but another does
not—it is much easier to reuse actions (and tests and testplans built from
them) across various kinds of test systems.

Switching Handlersin Particular

A common type of hardware handler is a “switching handler,” which
contains routines that know how to communicate with a switching module
and are aware of its topology. You do not call switching handlers directly
when using them. Instead, you use a “switching action” in your tests to call
the switching handler for you. When the switching handler is called,
software that manages switching decides which function to call based on the

88

Concepts
About Hardware Handlers

high-level (symbolic) namesin the paths, the topology of the system
hardware, the fixture, and the names of UUTSs.

What's Inside a Hardware Handler?

A hardware handler contains code, written in C, that implements the
functions called by HP TestExec SL when it interacts with hardware. A few
of the functions are general -purpose enough to be useful with various kinds
of hardware modules. These functions can:

« Open (initialize) a module.

* Close a module.

» Reset a module to a default state (which can be different from its
initialized state).

« Declare any parameters needed to create a unique instance of the handler,
such as which instrument identifier to use.

A hardware handler also can contain specialized functions that are used to

interact with switching hardware; i.e., when the hardware handler is used as
a switching handler. These functions can:

e Set the position of an element in a switching module.
« Return the current position of an element in the switching module.

» Declare nodes that define the topology of the switching module and the
switching elements that make them adjacent.

» Optionally improve the speed of switching by letting switching elements
open and close in parallel with one another instead of sequentially.

Each hardware handler resides in its own DLL. You need one hardware

handler for each type of module you wish to control from HP TestExec SL.

1. An “element” is a programmable connection, such as a relay or a
multiplexer.

89

Concepts
About Hardware Handlers

However, a single hardware handler can control more than one module
becauseit is passed one or more parameters that specify a unigque instance of
the module to control.

The example below shows a hardware handler used to control switching
hardware, which meansit is a switching handler. A switching handler
contains functions called by switching actions. The various functions inside
the DLL, some of which include calls to the switching API, control the
operation of the switching module. You do not need to write code that calls
these functions. Instead, your task in creating a switching handler is ssmply
to make the functions do whatever you wish them to do when they are called
by HP TestExec SL.

DLL

HP TestExec SL Switching Handler

Switching Actions ‘ ' IsPositionSet
in Tests Reset() 0

Functions in DLL:
Init()
DeclareNodes()

DeclareParms() <=

GetPosition()

4.# Switching Module \

Device Driver

SetPosition()
Close()

Caution

The functionsin aswitching handler let HP TestExec SL communicate with
the switching module via the switching handler. This communication is
two-way insofar as HP TestExec SL can request status information, such as
the current paosition of a switching element, aswell as control the operation
of the switching module.

Do not use both a switching handler and adirect 1/O strategy to control the
same switching module. Because a switching handler tracks the states of the
switching elements in a switching module, if you directly manipulate the
switching module the handler will not be aware of it and may assume the
wrong state.

90

Concepts
About Hardware Handlers

How Do Switching Actions Use Switching Handler s?

As stated earlier, a switching handler’s purpose is to let switching actions in
tests in your testplan control switching hardware. However, the way in

which switching actions, layers in the switching topology, switching

handlers, and switching hardware work together may initially seem obscure
because various software tools are used to create the individual components.

The relationships among switching actions, switching topology layers,
switching handlers, and switching hardware are established by the steps
below.

* You use the Switching Topology Editor to define topology layers and
associate switching handlers with them. This establishes the relationship
between physical hardware resources and logical resources defined in the
topology layers, such as switchable nodes and wires.

-2E MyUUTLayer. ust !E E
ClAliases _
CWires Name: IMyHaldwaleModule [T Dizable
E=Modules Description: 5 o paT—— T

8 My HardwareModule wample of aszociating a hardware module

with & switching handler

Prefix I

Library: IE:\F’roglam Files\HP TestExec SLbinkbyS Browse... |

When defining topology layers, you specify one switching handler per
type of hardware module. When there are multiple modules of the same
type, you can pass parameters (such as a VXlbus address) to the
switching handler to create unique instances of the hardware modules.

91

Concepts
About Hardware Handlers

» After creating a testplan, you specify which switching topology files to
use with the testplan. This makes switchable paths defined in the
switching handler visible to your testplan.

Switching Topology Files m

Fixture filename:

IE:\.F'mglam Filez"HP TestExec SLAbinMyFisturelay Browsze... |

UUT filename:
|E:\F'n:ugram Filez'"HP TestExec SLAbIn MU UTLayer Browsze... |

« You use the Test Executive’s features to create switching actions in tests
in your testplan.

Test Parameters | Actions | Limitz I Dptiu:unsl Du:u:umentatiu:unl

Actions for Test MyTestl’ |hzert... |
| Switching | .

92

Concepts
About Hardware Handlers

» You use the Switching Action Editor and Switching Path Editor to
specify what each switching action should do.

Switching Action Editor m

Uge this editor to specify the list of imtial switch settings for this test step. The spstem will
enzure that these connections are in place during the execution of thiz kest,

Imitial Path List
|7 [Met_dsntdLi<:0 Mebwik_Cha] Add Path... |
Switching Path E ditor B

|Jze this dialog to define/edit/view a switch path.
Current Path: Cancel |

I[Net_.fl‘n.nMUX: 0 Mefisitk_Ch]

Modesz Selected Mode Information

Fir: (TR -] | | 0-scivtor

tame for the connection to Channel 2

ROOT of the Metwark Analyzer.
Met AnkLx:0

bl 2:C2-HL

After you have done the preceding, the switching paths specified in
switching actions cause HP TestExec SL to make calls to the switching
handler, which in turn makes calls to a device driver or other means of
controlling the switching hardware.

WhereDo | Get aHardware Handler ?

Custom test systems sold by Hewlett-Packard that use HP TestExec SL may
come with prewritten hardware handlers appropriate for their specific
hardware. Otherwise, you must write your own hardware handler, as
described in Chapter 2 of ti@istomizing HP TestExec L. book.

93

Concepts
About Test & Action Libraries

About Test & Action Libraries

Librariesin General

In HP TestExec SL alibrary is a directory containing related itemsthat are
potentially reusable. The types of libraries supported by the Test Executive
are:

Test Library Contains test definitions that provide the structure for
tests. You can save any test in a testplan to a test
library.

Action Library Contains the actions from which tests are built.

You can search for library entries by name, add new entries, and modify or
delete existing entries.
Test Libraries

Reusing existing tests can greatly reduce the amount of work needed to
develop testplans for future UUTs. Although not every test that you develop
will be apotential candidate for reuse, you probably will create somethat are
important enough to reuse as-is or as templates for new, similar tests.

During the test devel opment process you can save atest definition, whichis
acopy of atest suitable for use as atemplate, in atest library. Each test
definition contains:

* A list of actions used in the test.

e The parameters for the actions, plus default values for the parallneters.

* A list of results associated with the test.

1. Only one set of values for parameters and limits—i.e., the values for one
named variant—is stored with each test definition.

94

Concepts
About Test & Action Libraries

» Default values used for limits checking by comparing the actual results
against the desired results.

As shown below, you reuse an existing test definition by inserting a copy of
it into a new testplan. In many cases, you will need to modify the existing
definition's parameters to fit the circumstances of the new test. For example,
you may need to specify which UUT pin is to be tested and modify the limits
for the reused test.

Old Testplan New Testplan

Test Library

Save Useful_Test Definition Reuse

Copy of
Useful_Test > >

Useful_Test

(more test definitions)

Test libraries are organized in a directory structure you can customize to
meet your needs. For example, you may want a directory for
general-purpose tests as well as individual directories that contain tests for
particular types of UUTs.

The name of each test library is the same as that of its directory. Inside the
test library directory, each test definition has a unique name, which is the
name of the test followed by the extension “utd”. For example, you might
have a test named “ileak” defined in file “ileak.utd” in directory “my_tests”.
Thus, the name of the test library is “my_tests”.

Action Libraries

Action libraries contain the actions used to build tests. They are most useful
when they store actions that do a single task because simple actions
potentially have greater reusability than more complex actions. Although
some actions are provided with the Test Executive, you are likely to create
many more to address your specific testing needs. Thus, action libraries tend
to become customer-specific over time.

95

Note

Concepts
About Test & Action Libraries

Actions consist of adefinition or sourceand aDLL that contains the action’s
executable code. The definition contains:

*« The name of the DLL in which the action code is found.
e A description of the action.

« The type of action, which can be C parameter block, National
Instruments LabView, or HP VEE calling sequence.

» Definitions of parameters used in the action, including the parameter's
type, default value, and description.

Action names should be unique so the Test Executive can identify each one.

The definition for each action resides in a file whose extension is “umd”;
e.g., “dmmsetup.umd”. Action libraries are organized in a directory structure
you can customize to meet your needs. Each action has two files associated
with it: its definition, and its DLL. The DLL need not be in the same

directory as the definition.

We recommend that you organize action libraries under a root directory, use
the root directory to hold all action DLLs, and define as many subdirectories
(libraries) as needed to hold the action definition files.

Development Versus Production Libraries

When developing code, it is a common practice to store the code in a special,
private library until it is stable enough for use in a production environment

or by other developers. And after the code has been released to production,
there may be times when you need to enforce changes to testplans. For this
reason, the organization of libraries used for development need not be the
same as the organization used in a production environment.

If you need to move individual library entries, or groups of them, follow
these guidelines:

» Be sure that the library search path (tests, actions, and the DLL search
path list) on any given system reference directories containing the tests,

96

Concepts
About Test & Action Libraries

actions, and handler routines heeded by any testplan to be run on that
system.

< If you move the action or instrument handler library entries, be sure to
move both the definition file and the DLL.

« Be sure the names of library entries are unique so the correct one will be
found and used.

What BelongsinalLibrary?

The previous topics described the characteristics of libraries, and suggested
how to use them, but did not suggest what belongs in libraries. Ideally, the
tests and actions that you store in libraries should have the following
characteristics:

e They should be appropriate for reuse.

It is in your own best interests to keep reusability in mind when
developing tests and actions. Generally speaking, simple,
general-purpose tests and actions tend to be more reusable than larger,
more specialized pieces of code. However, complexity is not always the
determining factor.

For example, suppose you were designing a test for a module that was
one in a family of similar modules. If you made the test just specific
enough to test whichever features all the modules in the family had in
common, you probably could reuse the test on all the modules simply by
providing it with new parameters and limits. Tests and actions that
exhibit good reusability are comprehensive but not so large that they are
cumbersome.

« They should use logical names for pins on the UUT, not specific pin
identifiers or other “hard-coded” information.

» They should not depend upon a specific sequence of actions or tests
preceding them for correct operation.

97

Concepts
About Test & Action Libraries

Note If you savein alibrary atest whose setup or cleanup tasks are derived from a
surrounding test group, the test saved in the library 1oses those setup or
cleanup tasks. Thus, you should indicate this dependency in the descriptive
comments for the test to make others aware of this potential problem.

98

Glossary of Terms

This glossary provides definitions of terminology that may be unfamiliar or
unique to HP TestExec SL. The definitions are in alphabetical order.

99

Action
The smallest component of atest or test group. Most actions have aname
and call auser-written routine that does something useful, such asmake a
measurement. The types of actions are execute, setup/cleanup, and
switching.

Action Definition Editor
A software tool used to create actions, which are the building blocks used
to create tests and test groups.

Action routine
Executable code, written in a standard programming language, that is
called by an action. An action routine does something useful, such as
making a measurement.

Action style
An action's “style” determines the method in which parameters are
passed to its action routines. The style depends upon which programming
language is used to write the action routines.

Actions can have the following styles:

DLL (Written in C/C++) Parameters are passed in a named
group or “block” of parameters. This style is highly
recommended as the fastest, easiest to create, and
easiest to maintain.

HP VEE (Written in HP VEE) Parameters are passed in a named
block or group of parameters to be graphically “wired” to
an HP VEE function.

LabVIEW (Written in National Instruments LabVIEW) Parameters are
passed in a named block or group of parameters to be
graphically “wired” to a National Instruments LabVIEW
virtual instrument (VI).

HP RMB (Written in HP BASIC for Windows) Parameters are
passed via a list of parameters in a server program.

100

Adjacency
Two nodes in the switching topology that can be connected by a
switching element.

Alias
An dternate name for an item in the switching topology. Aliases let you
use convenient names when defining topology; for example, you could
assign node “MCM:Inst11” an alias that is easier to remember, such as
“Scopelnput”. Each node can have one or more aliases.

Note that you cannot use aliases for the names of modules.

API (application programming interface)
In the context of HP TestExec SL, a large number of predefined functions
provided for use in the code that you write for a test system. HP TestExec
SL includes the:

« C Action Development API, which provides functions that let you use
a C/C++ compiler to develop action routines.

» Exception Handling API, which provides functions that let you raise
and examine exceptions that occur during testing. Also, it includes
functions that let you programmatically abort testing if an exception
occurs.

* Runtime API, which provides functions that let you replace the
default user interface for operators with a custom interface.

» Hardware Handler API, which contains functions used when writing a
hardware handler.

Datalogging
The process of collecting data about tests when the testplan runs.
Subsequent study of this data can aid you in improving the processes
associated with manufacturing and testing.

Data container
A method of encapsulating data beneath a layer of abstraction that hides
the data's complexity and increases its portability across programming
environments. A data container is an object.

101

DLL (dynamic-link library)
A library of software code that is automatically loaded and unloaded as
needed.

Exception
An error or unusual event that you would not normally expect to happen
during testplan execution. Exceptions can be raised by the underlying
code on which the Test Executive is built, or by user-defined routines
inside actions.

Note Although they are similar in concept, exceptionsin HP TestExec SL are
distinct from exceptions in a programming language or operating system.

Execute action
A type of action typically used to make a measurement. Each execute
action has a name and calls user-written code that does atask. You use
the Action Definition Editor to define an execute action and a
programming environment, such as Visual C++, to implement its code.

Hardware handler
A software layer between HP TestExec SL and the driver for a hardware
module. By providing a set of standard—i.e., “well-known"—functions
through which HP TestExec SL communicates with device drivers, a
handler enhances HP TestExec SL's ability to control devices.

Keyword
An identifier used to restrict the number of matches found when
searching for a specific item. Keywords often describe the item; for
example, suitable keywords for an action might be “trigger” or “range” to
identify what an action does or how it is used.

Library
A collection of related code stored in one or more directories.
HP TestExec SL supports libraries of actions and libraries of tests.
Organizing actions and tests into libraries makes it easier to find and
manage existing code so you can reuse it.

102

Limits checker
A feature that decides whether atest passed or failed by comparing the
test's results against predefined criteria. The kinds of limits checkers
provided by HP TestExec SL include:

Min/Max The test passes if its result is within specified
minimum/maximum values. To pass, the result
must be greater than or equal to the minimum and
less than or equal to the maximum.

Equivalence The test passes if its result exactly matches a
specified value.

Nominal The test passes if its result is within a specified +/-

Tolerance tolerance of a specified nominal value. To pass,

the result must be greater than or equal to the
lower tolerance value and less than or equal to the
upper tolerance value.

Note: The nominal tolerance is a simple number
and not a percentage. In other words, a nominal
tolerance of 5 meansthe result must be within plus
or minus 5 of the nominal value, not within plus or
minus 5 percent of it.

<No Limits> The test is not checked against pass/fail limits.

Master keyword
A keyword stored on a predefined list in the Action Definition Editor's
initialization file. You can use the Action Definition Editor to add a
master keyword to any action.

Module
A hardware resource in the switching topology, such asaV Xlbus
instrument.

Node

Any electrical point in the switching topology. Each node has a name, or
label.

103

Operator interface
A user interface whose main purpose is to let system operators interact
manually with HP TestExec SL. For example, atypical operator interface
might have onscreen buttons labeled " Start" and " Stop," as well as status
indicators labeled "Pass’ and "Fail" to report the results from testing.
System operators might use a mouse to "press' these buttons and then
accept or reject UUTs based on their pass/fail status after the testplan has
run.

Parameter block
A list of named parameters stored in a uniquely named collection or
“block.” When you need to use the parameters, you specify a handle to
the parameter block instead of specifying the full list of parameters.
Parameters in a parameter block are looked up by name and not by their
position in the block.

Profiler
A software tool you can use to see how long each action or test group in a
testplan takes to execute. Once you know how long each action or test
group takes to execute, you can decide where to begin the "tuning"
process, and monitor any improvements you make.

After enabling the profiler, you run a testplan to collect data, and then
either view Pareto charts directly in HP TestExec SL or use a financial
spreadsheet program to further analyze the data.

Routine type
The identifier of how an action routine is used. You can specify either
setup, cleanup, paired setup/cleanup, or execute routines, where:

» Execute routines contain a single entry point and typically do a single
task, such as making a measurement.

e Setup routines contain a single entry point and typically do a single
task, such as setting up a power supply before making a measurement.

» Cleanup routines contain a single entry point and typically do a single
task, such as resetting a power supply after making a measurement.

104

» Paired setup/cleanup routines contain two entry points and typically
bracket (surround) one or more execute actions. For example, the
setup component of a setup/cleanup routine could set the UUT to a
particular mode, an execute routine could make a measurement, and
the cleanup component of a setup/cleanup routine could return the
UUT to its idle mode.

Sequence
A named series of test groups, tests, and flow control statements executed
in a predefined order.

Setup/cleanup action
A type of action typically used do tasks before and after execute actions.
Each setup/cleanup action has a name and calls user-written code that
does a task. You use the Action Definition Editor to define a
setup/cleanup action and a programming environment, such as Visual
C++, to implement its code.

Switching action
A type of action that sets up connections, such as switching paths made
with relays, at the beginning of a test and controls the status of those
connections when the test ends. Unlike other types of actions, you do not
use the Action Definition Editor to create switching actions; instead, they
are built into HP TestExec SL. Also, switching actions do not have
individual names.

Switching element
A programmable connection, such as a relay, between two nodes in a
switching path.

Switching handler
A common type of hardware handler. When you use a switching handler
with a switching module, you can use the Switching Topology Editor to
define your test system's topology and then use the Switching Path Editor
to conveniently control switching paths during a test or test group.

Switching path
A necessary connection between nodes during a test or test group. The
connection is made via one or more switching elements, such as relays.

105

In the example of a switching path below, the source bus of the function
generator is connected to the measurement bus of the oscilloscope when
the switching path is closed.

[FuncGen SrcBus Scope MeasBus]

Switching state
A “snapshot” or stored copy of one or more switching paths and the
states of the switching elements in those paths.

Switching topology
A combination of physical and logical descriptions that define the
switching configuration and interconnections between resources and the
UUT, which includes definitions for the modules, wires, switches, and
buses of the test system. These definitions map a logical view of your
system's hardware onto its physical reality, and add a level of abstraction.

Switching Topology Editor
A software tool used to define switching topology and to make the Test
Executive aware of hardware modules that are available as resources
during testing.

Switching topology layer
Switching topology is defined in three layers: system, fixture, and UUT.
The first layer defines the system hardware, the second defines one or

more fixtures used with the system hardware, and the third defines one or
more UUTs used with a given fixture.

Information defined at the system layer includes:
« Definitions for any cards or modules used in the system.
» A definition of the cabling that connects the cards or modules.

» Definitions of convenient names—i.e., aliases—for system resources,
such as “DVM_high”.

Information defined at the fixture layer includes:

+ Definitions of wires in the fixture.

106

Definitions for the names of any edge connectors.

Definitions for any electronics inside the fixture that is a part of your
switching strategy.

Information defined at the UUT layer includes:

Definitions of convenient aliases for test points on the UUT, such as
“TP1.”

Symbol table
An unordered, named collection of data items (variables) called
“symbols” whose usage has a specific scope. For example:

The symbol table named System contains symbols associated with the
testing environment, such as the user ID, test system ID, and serial
number of the UUT. Its scope is the testplan.

User-named external symbol tables are supported. Their scope is the
testplan with which they are associated.

The symbol table named SequencelLocals contains symbols whose
scope is a sequence. Variables defined in it can be used to pass values
between tests or test groups because the variables are visible within a
given sequence throughout the testplan.

The symbol table named TestStepLocals contains symbols whose
scope is a specific test or test group. Variables defined in it can be
used to pass values between actions inside the current test but not to
actions in other tests or test groups.

The symbol table named TestStepParms contains symbols whose
scope is a specific test or test group. Variables defined in it contain
parameters passed to the test or test group.

The symbol table named TestPlanGlobals contains symbols whose
scope is global to the testplan and all tests and actions in all
sequences. Variables defined here can pass values anywhere within a
testplan.

107

Test
A named series of actions executed as a group. A test can contain
execute, setup/cleanup, and switching actions.

To be meaningful, most tests use a limits checking feature that
determinesif the unit under test passed or failed the test. Also, most tests
use a datalogging feature to store information collected during the test.

Test Executive
A software tool used to devel op tests, assemble them into atestplan, run
the testplan, and evaluate the pass/fail results.

Test group
An optional, named set of tests executed in a predefined order. Each test
group can have an associated list of setup/cleanup actions that do setup
and cleanup tasks for all the tests bounded by the test group, and alist of
switching actions. A test group is bounded by “testgroup <name>" and
“end testgroup” statements inside a testplan. Test groups can be nested
inside test groups.

Test limits
The acceptable boundaries for a test. For example, if the results from a
test are less than the lower limit or greater than the upper limit, the test
fails. A test can have more than one set of limits, where each set is
associated with a named variant, such as “Hot” or “Cold.”

Test procedure
A group of measurement routines that comprise a test; i.e., another name
for a test.

Testplan
A named sequence of tests executed in a predefined order to test a
specific device or unit under test. A testplan also can be further divided
into groups of tests called “test groups.”

UUT (unit under test)
The unit, module, device, etc. being tested. Sometimes referred to as a
DUT, or device under test.

108

Variant
A mechanism that lets you specify which named variation on atestplanis
executed when you run the testplan. Because the let you use one testplan
with n different sets of test limits and parameters, variants are useful
where one UUT isvery similar to another except for sightly different
values for itstest limits or parameters.

Each variant lets you:
« Use the same sequence of tests with different parameters and limits.

For example, you may want to specify different limits for various
temperatures at which the tests are executed.

« Control which set of tests is executed for a given testplan.

For example, the set of tests used by Quality Control may be a
superset of the tests used by Production.

« Change the testing algorithm as desired.

For example, a testing algorithm used by Quality Control may need
greater precision than a testing algorithm used by Production.

The name of the default variant is Normal. Other typical variants might
be named Hot or Cold.

VXlplug& play
An industry standard that lets you program standalone and VXlbus
instruments using various programming languages, such as HP VEE,
Visual Basic, and Visual C++. VX¥lug& play drivers have a consistent
architecture, and are developed and used in a consistent fashion. They let
vendors of instruments develop drivers for their own instruments, and
ensure that those drivers are interoperable with drivers provided by other
vendors.

Wire
A bus or other connection in the switching topology.

109

| ndex

A

action
choosing which kind to use, 73
defined in Glossary of Terms, 100
execute, 61, 69
handling exceptionswithin actions, 80
library, 95
order of execution within atest, 72
paired structure, 71
setup, 61
setup/cleanup, 69
specifying which to use for limits
checking, 65
switching, 69, 76, 77
Action Definition Editor, 12
defined in Glossary of Terms, 100
action library, 95
action style
defined in Glossary of Terms, 100
adjacency
defined in Glossary of Terms, 101
adjacent elements
in switching topology, 84
dias
defined in Glossary of Terms, 101
in switching topology, 86
All Public option when searching
symbol tables, 39

B

branching
complex in atestplan, 54
on apassing or failing test, 51
on an exception, 52

C

checking pass/fail limits for atest, 62
code reuse, 17
controlling the flow of testing, 50
controlling what happensthefirsttimea
testplan runs, 50
custom tools
using to enhance HP TestExec SL, 42

D

data container

defined in Glossary of Terms, 101
datalogging

defined in Glossary of Terms, 101
default password

for logging in on Windows 95, 27

for logging in on Windows NT, 32
DLL (dynamic link library)

defined in Glossary of Terms, 102

E

error handling
branching on an exception, 52
exception
handling via actions, 80
handling via Exception sequence, 79
how HP TestExec SL handles, 79
overview, 79
where to handle, 80
Exception sequence, 53, 79
things to know when using, 53
execute action, 61, 69
defined in Glossary of Terms, 102

F

flow control statement, 50
syntax for accessing symbols from, 50

G
global variablesin testplans, 58

H

hardware handler, 88
defined in Glossary of Terms, 102
hot switching, 77
HP BASIC for Windows
installation considerations on
Windows 95, 26
installation considerations on
Windows NT, 32
HP TestExec SL
Action Definition Editor, 12

112

enhancing via custom tools, 42

installing on Windows 95, 25

installing on Windows NT, 30

overview, 10

running on Windows 95, 27

running on Windows NT, 32

Switching Topology Editor, 13

system requirements for running on
Windows 95, 24

system requirements for running on
Windows NT, 29

Test Executive, 10

using to control hardware, 88

using to control switching, 88

HPVEE

system administration considerations
on Windows 95, 26

system administration considerations
on Windows NT, 31

I
initialization file

where to find a default copy of, 25, 30
installing HP TestExec SL

notes about installing a new version

over an old version, 24, 29
on Windows 95, 25
on Windows NT, 30

K

keyword
defined in Glossary of Terms, 102

L

layersin switching topology, 85
library
action, 95
contents, 97
defined in Glossary of Terms, 102
development versus production, 96
overview, 94
test, 94
using to manage tests & actions, 94
what belongsin, 97

limits

defined in Glossary of Terms, 108
limits checker

defined in Glossary of Terms, 103
limits checking, 62

shortcut when specifying test limits,

40

specifying which action to use for, 65
logging in

on Windows 95, 27

on Windows NT, 32

M

Main sequence, 53
model for switching topology, 85
module
defined in Glossary of Terms, 103
in switching topology, 86
multiple personalities in a testplan, 56

N

node
in switching topology, 83

O

On Fail Branch To feature, 52
On fail goto test, 52
operator interface
defined in Glossary of Terms, 104

P

paired structure in actions, 71
parameter
specifying properties for, 37
parameter block
defined in Glossary of Terms, 104
password
default for logging in on Windows 95,
27
default for logging in on Windows
NT, 32
path
switching, 76

113

profiler
defined in Glossary of Terms, 104

R

relationship between tasks & data, 36
results from atest, 62

displayed as reals, 67
reusable code, 17
routine type

defined in Glossary of Terms, 104
running HP TestExec SL

on Windows 95, 27

on Windows NT, 32

S

sequence

Exception, 53, 79

Main, 53
Sequencelocals symbol table, 58
sequencing of tests, 49
setup action, 61
setup/cleanup action, 69

defined in Glossary of Terms, 105
skipping testsif afailure occurs, 52
statement

for controlling the flow of testing, 50
switching, 82

action, 77

controlling during atest, 76

hot, 77

switching element, 83
switching action, 69, 76, 77

defined in Glossary of Terms, 105
switching element, 83

defined in Glossary of Terms, 105
switching handler, 88

defined in Glossary of Terms, 105

where to get, 93
switching path, 76

defined in Glossary of Terms, 105
switching state

defined in Glossary of Terms, 106
switching topology

defined in Glossary of Terms, 106

details, 83
establishing the relationship among
switching actions, switching
topology layers, switching
handlers & switching hardware, 91
Switching Topology Editor, 13
three-layer model, 85
Switching Topology Editor, 13
defined in Glossary of Terms, 106
switching topology layer
defined in Glossary of Terms, 106
symbol
searching for in symbol tables, 39
specifying properties for, 37
syntax for accessing fromflow control
statements, 50
symbol table, 45
defined in Glossary of Terms, 107
Sequencelocals, 58
syntax for accessing symbols from
flow control statements, 50
TestStepLocals, 75
system administration
considerations for HP VEE on
Windows 95, 26
considerations for HP VEE on
Windows NT, 31
system requirements
for running HP TestExec SL on
Windows 95, 24
for running HP TestExec SL on
Windows NT, 29

T

test
branching on a passing or failing, 51
contents, 61
defined in Glossary of Terms, 108
execution details, 73
library, 94
limits checking, 62
order of execution of actions within,
72
overview, 61
passing results between actions, 75

114

shortcut when specifying test limits,
40
skipping if afailure occurs, 52
using to control switching, 76
viewing the details, 73
test development environment
how the software tools interact, 20
overview, 19
workingin, 36
Test Exec SL. See "HP TestExec SL"
Test Executive, 10
defined in Glossary of Terms, 108
test group, 46
defined in Glossary of Terms, 108
viewing or modifying actions
associated with, 48
test library, 94
test limits
defined in Glossary of Terms, 108
shortcut when specifying, 40
test procedure
defined in Glossary of Terms, 108
testplan
branching on a passing or failing test,
51
branching on an exception, 52
complex branching, 54
contents, 46
controlling the sequencing of tests, 50
controllingwhat happensthefirst time
atestplan runs, 50
defined in Glossary of Terms, 108
global variables, 58
multiple personalities, 56
overview, 46
sequencing of tests, 49
test group, 46
variant, 55
TestStepl ocals symbol table, 75
three-layer model for switching
topology, 85
tools
adding custom tools to HP TestExec
SL, 42
topology. See " Switching Topology"

U

UUT (unit under test)
defined in Glossary of Terms, 108

\%

variant
defined in Glossary of Terms, 109
using, 55

V XlIplug& play
defined in Glossary of Terms, 109

W

wire
defined in Glossary of Terms, 109
in switching topology, 86

115

	1 Introduction to HP TestExec SL
	What is HP TestExec SL?
	What Makes HP TestExec SL Different?
	The Benefits of Reusable Code
	Why Code Is Not Reused
	How HP TestExec SL Encourages Reusability

	The Test Development Environment
	Overview
	How the Software Tools Interact

	About System Integration

	2 Installing & Running HP TestExec SL
	Installing & Running on Windows 95
	System Requirements
	Notes About Installing a New Version Over an Old Version
	To Install the Software on Windows 95
	HP VEE Considerations
	HP BASIC for Windows Considerations
	To Run HP TestExec SL on Windows 95
	To Uninstall HP TestExec SL on Windows 95

	Installing & Running on Windows NT
	System Requirements
	Notes About Installing a New Version Over an Old Version
	Installing the Software
	To Install HP TestExec SL on Windows NT 3.51
	To Install HP TestExec SL on Windows NT 4.0 or later

	HP VEE Considerations
	HP BASIC for Windows Considerations
	To Run HP TestExec SL on Windows NT
	Uninstalling the Software
	To Uninstall HP TestExec SL on Windows NT 3.51
	To Uninstall HP TestExec SL on Windows NT 4.0 or later

	3 Concepts
	Working in the HP TestExec SL Environment
	Understanding the Relationship Between Tasks & Data
	Specifying the Properties for Parameters & Symbols
	Understanding the Two Views of Test Limits
	Using Custom Tools to Enhance the Environment

	About Testplans, Test Groups, Tests & Actions
	A Closer Look at Testplans
	What is a Testplan?
	What's Inside a Testplan?
	Test Groups
	What is a Test Group?
	Why are Test Groups Useful?

	Sequencing & Flow Control
	Flow Control Statements
	Using Symbols with Flow Control Statements
	Branching on a Passing or Failing Test
	Branching on an Exception
	More Complex Branching

	Testplan Variants
	Global Variables in Testplans

	A Closer Look at Tests
	What is a Test?
	What's Inside a Test?
	Limits Checking
	Parameter Passing

	A Closer Look at Actions
	What is an Action?
	What's Inside an Action?
	Paired Structure in Actions
	Which Kind of Action Do You Need?
	Passing Results Between Actions Inside Tests
	How Actions Control Switching

	About Exceptions
	What is an Exception?
	How Does HP TestExec SL Handle Exceptions?
	Where Should I Handle Exceptions?

	About Switching Topology
	What is Switching?
	What is Topology?
	How Switching & Topology Interact
	A Closer Look at Switching Topology
	Switching Paths
	The Three�Layer Model for Switching Topology

	About Hardware Handlers
	Hardware Handlers in General
	Switching Handlers in Particular
	What’s Inside a Hardware Handler?
	How Do Switching Actions Use Switching Handlers?
	Where Do I Get a Hardware Handler?

	About Test & Action Libraries
	Libraries in General
	Test Libraries
	Action Libraries
	Development Versus Production Libraries

	What Belongs in a Library?

	Glossary of Terms
	Index

